点击我爱计算机视觉标星,更快获取CVML新技术
今日FlyAI新上图片超分辨率挑战赛,总奖池5000元人民币,研究相关方向的朋友不妨一试,文末有福利。
注册链接:
https://www.flyai.com/?s=GCtBRYUf-
点击阅读原文也可直达。
大赛简介
图像分辨率是用来评估图像中蕴含细节信息丰富程度的一个指标。高分辨率图像相对于低分辨率图像拥有更大的像素密度,更多的纹理细节信息。
但在实际生活中,由于受到采集设备、网络传输介质等因素的影响,我们通常得到的是一些低分辨率的图像,因此图像超分辨率重建技术具有深远的研究意义。
图像超分辨率是指将一幅低分辨率图像恢复成高分辨率的图像,在本数据集一共有1800张图片,其中包括900对高分辨率和低分辨率图片,这里高分辨率图片大小是低分辨率图片大小的四倍。训练集、验证集和测试集划分比例为6:2:2.
参赛须知
参赛时间: 本次竞赛无时间限制,长期有效开放
如何参赛?
方式一:在线提交体验结果。FlyAI已提供了赛题的样例代码,在竞赛主页点击【查看样例】可以直接使用样例代码提交到免费GPU进行模型训练体验。
方式二:本地调试模型并提交训练。请在"在线提交页"点击【下载代码】按钮将包含项目样例的资料包下载到本地,并使用本地终端命令提交作品。
参赛选手说明
参赛人员身份信息需保证真实、有效,大赛主办方仅将个人信息用于赛事数据授权及颁奖使用
欢迎海内外的在校学生,算法工程师和所有AI爱好者参与
本次竞赛报名形式:以个人形式本地提交作品线上审核,并且以最终提交算法得分作为唯一有效成绩
报名成功后请加入FlyAI竞赛交流群,一起学习进步!重要通知也将在群内发布,不要错过哦
比赛作品说明
最终比赛成绩以排行榜显示排名为准
根据作品提交时间先后顺序进行人工审核,审核合格后提交至排行榜
禁止使用外部链接下载代码替换本项目代码
提交的代码具备可解释性并且其它开源框架可复现
所有相似代码将一律不通过审核!!情况多次出现者封号处理
如有发现利用非正常手段作弊行为,奖金一律不发放。之前所获得奖金金额官方有权收回,情节严重者封号处理
提交代码即视为阅读并同意以上比赛作品说明
大赛奖项设置
奖项说明:
奖项设置 | 获奖人数 | 奖金额度说明(按最终得分评判) |
---|---|---|
参与奖(总奖金20%) | 所有人 | 根据基线得分与100分之间,分成5个奖金区间;不同得分区间获得相应的竞赛奖金。 |
突破奖(总奖金10%) | 所有人 | 更新排行榜最高分数,获得相应的竞赛奖金 |
排名奖(总奖金70%) | 月赛前5名 | 奖金发放最终以月为单位,前5名获奖占比以K系数表示,分别为:0.45,0.25,0.15,0.1,0.05 |
不同框架奖励 | 所有人 | 获得60FAI币用于GPU训练资源消耗 |
备注:
上线时间:2019-10-18
月排名奖结算时间:2019-11-19 15:00:00
奖金获取标准:90<Score 按照得分比例获取奖金
获得奖金分为3部分:参与奖、突破奖为审核完毕实时获取的奖金,排名奖需在规定时间结束后根据排名顺序获得
排名奖发放完毕前5名参赛者需提供Markdown格式赛题解决思路(FlyAI提供模版)
Bouns表示为:奖金池总金额;Score表示为:模型得分;
同一用户在参与奖中模型得分区间相同无法再次获得奖励
各项奖金获得计算公式参考如下:
参与奖(Participation Award)
R表示:得分的区间系数;T表示为:相同得分区间得分人数;
100-标准分:分为5个区间系数;R1(0.02),R2(0.08),R3(0.15),R4(0.25),R5(0.5)
突破奖(Prizes)
N表示:第N次更新排行榜;Prizes_N-1表示:排行榜更新后已发放的突破奖金
排名奖(Ranking Award)
K表示:排行榜前5名的奖金分配系数,分别为:0.45,0.25,0.15,0.1,0.05;
赛事主题和数据说明
赛题描述
通过实现算法并提交训练,获取奖金池奖金。小提示:抢先更新算法排行榜,有更大机会获取高额奖金哦!
数据来源
SingleImageSuperResolution4Scale
数据描述
由于需要提交代码作品在云端进行训练,参赛数据集不对外开放。仅提供调试数据,可通过使用本地调试的方式获取调试数据集。
字段说明:
字段名 | 字段类型 | 取值区间 | 字段描述 |
---|---|---|---|
hr_image_path | string | 不为空 | 高清图片的相对路径 |
lr_image_path | string | 不为空 | 低清图片的相对路径 |
输入字段: lr_image_path,
输出字段: hr_image_path,
评审标准
评审指标说明
SSIM 是一种用以衡量两张图片相似程度的指标,一般取值范围:0-1. 值越大,视频质量越好。
可参考 from skimage.measure import compare_ssim 中的实现方式。
计算公式如下:
比赛常见问题说明
Q:比赛使用什么框架?
比赛支持常用的机器学习和深度学习框架,比如TensorFlow,PyTorch,Keras,Scikit-learn、MXNet、PaddlePaddle等。
Q:怎么参加比赛,需不需要提交csv文件?
FlyAI竞赛平台无需提交csv文件,在网页上点击报名,下载项目,使用你熟练的框架,修改main.py中的网络结构,和processor.py中的数据处理。请仔细阅读右侧提交指南,使用FlyAI命令参与比赛。
Q:比赛排行榜分数怎么得到的?
参加项目竞赛必须实现 model.py 中的predict_all方法。系统通过该方法,调用模型得出评分。
52CV粉丝福利
52CV为参加FlyAI竞赛的同学专门建立了交流群,成员享有如下福利:
加入专属竞赛群,不再单打独斗,一起努力一起赢奖金
群内不定时红包,关于竞赛或奖金有任何疑问均可第一时间获得FlyAI工作人员回复
可以直接找FlyAI小助手添加GPU积分,免费使用平台提供GPU训练资源
添加CV君微信,(如已经加过CV君微信号,请直接私信),拉入交流群
注明FlyAI
长按关注我爱计算机视觉