GAN之绝唱:动漫角色转换真人,《飞屋环游记》中的小罗竟酷似他……

本文经机器之心(almosthuman2014)授权转载,禁止二次转载. 

电影《超人总动员》中的巴小飞和《飞屋环游记》中的小罗都是大家熟悉且喜欢的角色。但你有没有想过,这些动漫角色的「真人」版会是什么样子……这项研究将告诉你答案。

将人脸卡通化的应用我们已经见过一些了,比如此前介绍过的 Toonify Yourself !,那么能不能反过来,将卡通形象变成「真人版」呢?

最近 GS&P 广告公司技术总监 Nathan Shipley 利用AI创建了皮克斯角色的「真人」版,看起来效果还不错。(PS:他曾经制作了「复活」艺术家达利的deepfake实例。)

《超人总动员》里的「飞毛腿」巴小飞也太可爱了吧,真人版与原版非常相似。

《飞屋环游记》里的小罗原来「真人版」长这样,有点吓人。虽然五官相似,但头发有点非主流,看样子是把原图中的帽子转换成了头发……

二代蜘蛛侠Miles及其经过转换后的真人版。

不光如此,他还把画作里的人物变「回」现实。比如蒙娜丽莎:

墨西哥女画家弗里达·卡罗的自画像:

上:弗里达·卡罗的自画像(左)与转换后的「真人版」;下:弗里达·卡罗的照片。


这是怎么做到的呢?

Nathan表示他使用了一个叫做pixel2style2pixel的框架,在与源图像形状匹配的StyleGAN FFHQ潜在空间中快速找出「真人版」人脸图像,而且pixel2style2pixel的速度很快!

论文地址:

https://arxiv.org/pdf/2008.00951.pdf
GitHub地址:

https://github.com/eladrich/pixel2style2pixel

pixel2style2pixel 框架

今年8月,来自Penta-AI 和以色列特拉维夫大学的Elad Richardson、Yuval Alaluf等人发表论文,提出了一个图像到图像转换的通用架构——Pixel2Style2Pixel (pSp)。该架构基于一种新型编码器网络构建,可以直接生成一系列风格向量,然后输入到预训练好的StyleGAN生成器,形成可扩展的W+ 潜在空间。

该研究首先展示了编码器可以直接将真实图像嵌入到W+ 潜在空间,且不需要额外的优化。然后介绍了身份损失(identity loss),它可以在输入图像重建中实现更高的性能。

pSp是一个简单的架构,通过利用训练好的固定生成器网络,可以很容易地应用于广泛的图像转换任务。通过风格表示解决图像转换任务,这种方法带来了不依赖局部像素到像素对应的全局方法,且该方法通过风格重采样支持多模态合成。

值得注意的是,pSp架构可以在没有任何标注数据的情况下,将人脸图像与正面姿态对齐,为模糊任务生成多模态结果,如基于分割图的条件人脸生成、基于低分辨率图像构建高分辨率图像。

pSp可应用于基于分割图的人脸生成、超分辨率任务、图像修复等任务。

pSp架构

pSp 架构基于预训练 StyleGAN 生成器、W+ 潜在空间构建而成。在 StyleGAN 中,该研究展示了不同风格输入对应于不同层次的细节,这些细节大致分为三组:粗、中、细。于是,研究人员使用特征金字塔 [27] 扩展编码器主干网络,生成三种层次的特征图,它们使用简单的中间网络map2style来提取风格,如下图 2 所示。

图2:pSp架构图示。

pSp架构首先对ResNet主干网络应用标准特征金字塔,提取特征图;然后,对于每一个目标风格分别训练小型映射网络map2style,以基于对应特征图提取学得的风格;接着,将每一个生成向量输入到StyleGAN中。

pSp的应用场景

1. StyleGAN Inversion

pSp架构在预训练StyleGAN生成器的潜在域中寻找真实图像的潜码。

下图4展示了不同方法在CelebA—HQ数据集上的对比。实验结果表明,pSp方法能够在保留图像身份的同时重建细节,如面部光线、发型和眼镜等。



2. 面部转正

由于需要非局部变换、缺乏成对的训练数据,面部转正是图像转换中比较有挑战性的任务。该研究表明,其提出的基于风格的转换机制能够克服上述挑战,即使没有标注训练数据也可以运行。

下图展示了不同方法的面部转正效果对比:



由实验结果可以看出,当用相同的数据训练时,pix2pixHD无法收敛到令人满意的结果,因为它更依赖于输入和输出对之间的对应关系。而pSp能够很好地处理任务,生成逼真的脸部正面图像,与更复杂的RotateAndRender(R&R)方法效果相当。

3. 条件图像合成

条件图像合成即基于特定输入类型生成逼真图像。研究者在两个条件图像生成任务上对pSp架构进行了测试,分别是基于草图和语义标签图生成高质量的人脸图像。

对于基于草图生成高质量人脸图像任务,该研究对pSp、pix2pixHD、DeepFaceDrawing进行了对比,pSp实现了不错的效果:



对于基于分割图生成人脸图像的任务,研究者在CelebAMask-HQ数据集(包含19个语义类别)上对pix2pixHD、SPADE、CC_FPSE和pSp进行了对比:


4. 超分辨率

研究显示,pSp方法可以根据相应的低分辨率(LR)输入图像来构建高分辨率(HR)面部图像。下图11展示了使用该方法与以往方法的生成图像的视觉对比效果:



此外,为了更好地显示pSp框架的灵活性,研究者还展示了其在局部编辑、图像修复和人脸图像插值三种应用中的效果:


网友:图像分辨率很高,细节需要改进

这一研究工作引起了网友的热议。有人感叹:「图像分辨率实在太高了」、「做好病毒式传播的准备吧」。

该研究有什么实际用处呢?有人畅想:「在若干年内,我们能够以这种方式进行整部影片的转换,那该多酷啊。一部影片看5遍,每次都有不同的风格。」

不止如此,还有人表示:「除了已知情节外,我们还可以构建一些颠覆用户预期的原创故事情节。」

不过,转换后的图片有时存在一些瑕疵,比如上文提到的小罗,转换后不仅帽子消失了,头发变成了金黄色,耳朵也没有了。

参考链接:
https://www.reddit.com/r/MachineLearning/comments/jcuch4/p_creating_real_versions_of_pixar_characters/

END

备注:GAN

GAN

生成对抗网络、GAN等技术,

若已为CV君其他账号好友请直接私信。

我爱计算机视觉

微信号:aicvml

QQ群:805388940

微博知乎:@我爱计算机视觉

投稿:amos@52cv.net

网站:www.52cv.net

在看,让更多人看到  

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TensorFlow实现CycleGAN的步骤大致如下: 1.准备数据集:收集苹果和橙子的图片,将它们分别放在两个文件夹。 2.构建模型:使用TensorFlow的Keras API,构建一个CycleGAN模型。CycleGAN由两个生成器和两个判别器组成。其,一个生成器将苹果图片转换为橙子图片,另一个生成器将橙子图片转换为苹果图片;两个判别器用于判别生成的图片是否真实。 3.定义损失函数:CycleGAN使用对抗损失函数和循环一致性损失函数。对抗损失函数用于训练判别器,循环一致性损失函数用于训练生成器。 4.训练模型:使用定义的损失函数,训练CycleGAN模型。在训练过程,生成器和判别器交替训练。 5.测试模型:使用训练好的CycleGAN模型,将测试集的苹果图片转换为橙子图片,或将测试集的橙子图片转换为苹果图片。 下面是一个示例代码,实现了苹果和橙子的转换: ``` import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 构建生成器 def make_generator_model(): model = keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model # 构建判别器 def make_discriminator_model(): model = keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model # 定义损失函数 cross_entropy = keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) # 定义优化器 generator_optimizer = keras.optimizers.Adam(1e-4) discriminator_optimizer = keras.optimizers.Adam(1e-4) # 实例化生成器和判别器 generator = make_generator_model() discriminator = make_discriminator_model() # 训练模型 @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # 测试模型 def generate_and_save_images(model, epoch, test_input): predictions = model(test_input, training=False) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() # 加载数据集 train_images = load_apple_orange_dataset() # 训练模型 for epoch in range(EPOCHS): for batch in train_dataset: train_step(batch) if epoch % 15 == 0: generate_and_save_images(generator, epoch + 1, seed)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值