本文转载自知乎,已获作者授权转载。
链接:https://zhuanlan.zhihu.com/p/368256419
NTIRE 2021 视频质量增强竞赛 (Challenge on Quality Enhancement of Compressed Video)由瑞士苏黎世联邦理工学院(ETH Zurich)博士研究生 Ren Yang(本人)及导师 Dr. Radu Timofte 主办,为 NTIRE Workshop(CVPR 2021)的竞赛之一。
NTIRE Workshop 时间定于 CVPR 2021 首日:美国田纳西州当地时间 6 月 19 日全天,敬请关注。
联系方式:杨韧 (ren.yang@vision.ee.ethz.ch)
竞赛主页(含数据库、开源代码等):
https://github.com/RenYang-home/NTIRE21_VEnh
数据库分析报告(10 页):
https://arxiv.org/abs/2104.10782
方法及结果汇总报告(20 页):
https://arxiv.org/abs/2104.10781
1. 竞赛简介
本次竞赛分为三个赛道:
Track 1: Fixed QP, Fidelity
(https://competitions.codalab.org/competitions/28033)
视频采用 HM 16.20 的默认 LDP 配置压缩,设置 QP = 37,参赛方法根据 PSNR 提升排名
Track 2: Fixed QP, Perceptual
(https://competitions.codalab.org/competitions/28034)
视频采用 HM 16.20 的默认 LDP 配置压缩,设置 QP = 37,参赛方法根据 MOS 分数排名
Track 3: Fixed bit-rate, Fidelity
(https://competitions.codalab.org/competitions/28035)
视频采用 FFMpeg 的 x265 固定码率为 200 kbps 压缩,参赛方法根据 PSNR 提升排名
2. 数据库
Large-scale Diverse Video (LDV) Dataset
本竞赛使用新提出的 LDV 数据库,该数据库包含 240 个视频,在视频内容、帧间运动、拍摄方式、光线亮暗和帧率等方面有较好的多样性,如下图所示:

LDV 数据库视频示例
数据库链接见于上文竞赛主页,如该数据库对您的研究有所帮助,请引用:
@inproceedings{yang2021dataset,
title={{NTIRE 2021} Challenge on Quality Enhancement of Compressed Video: Dataset and Study},
author={Ren Yang and Radu Timofte},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year={2021}
}
@inproceedings{yang2021ntire,
title={{NTIRE 2021} Challenge on Quality Enhancement of Compressed Video: Methods and Results},
author={Ren Yang and Radu Timofte and others},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year={2021}
}
3. 方法及结果
竞赛结果汇总如下:


由上表可见,所有参赛方法均对压缩视频的质量有明显提升,且均好于 MFQE、QE-CNN 等原有方法。NTU-SLab 和 BILIBILI AI & FDU 参赛组在三个赛道均排名 TOP 2,其中 NTU-SLab 时间复杂度更低,泛化能力更强。
VUE、NOAHTCH、MT.MaxClear、Gogoing、Shannon 和 Block2Rock 参赛队在至少一个赛道排名 TOP 5,Ivp-tencent 的模型是唯一达到 >1 fps 的视频质量增强方法,其速度可达 120 fps,并实现与原有方法 MFQE 相似甚至更好的质量增强效果。
参赛方法的详细介绍及结果分析见于方法及结果汇总报告(链接见上文)
我们尽量争取更多方法的开源代码和模型,并在竞赛主页随时更新。
最后感谢所有参赛队(包括注册但未提交最终结果的)对我们的大力支持,感谢赞助商和参与主观实验的志愿者。希望本竞赛能够对该领域的研究起到推动作用,并对未来的研究有所启发。
备注:增强
图像与视频增强交流群
扫码备注拉你入群。