NTIRE @ CVPR 2021 视频质量增强竞赛:数据库、方法及结果汇总(官方发布)

这篇博客介绍了NTIRE2021视频质量增强竞赛,包括Track1-3的细节、LDV多样视频数据库、参赛团队的表现,以及开源代码和方法总结。竞赛旨在提升压缩视频质量,展示了多种技术路线和优秀成果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文转载自知乎,已获作者授权转载。

链接:https://zhuanlan.zhihu.com/p/368256419

NTIRE 2021 视频质量增强竞赛 (Challenge on Quality Enhancement of Compressed Video)由瑞士苏黎世联邦理工学院(ETH Zurich)博士研究生 Ren Yang(本人)及导师 Dr. Radu Timofte 主办,为 NTIRE Workshop(CVPR 2021)的竞赛之一。

NTIRE Workshop 时间定于 CVPR 2021 首日:美国田纳西州当地时间 6 月 19 日全天,敬请关注。

联系方式:杨韧 (ren.yang@vision.ee.ethz.ch)

竞赛主页(含数据库、开源代码等):

https://github.com/RenYang-home/NTIRE21_VEnh

数据库分析报告(10 页):

https://arxiv.org/abs/2104.10782

方法及结果汇总报告(20 页):

https://arxiv.org/abs/2104.10781

1. 竞赛简介

本次竞赛分为三个赛道:

  • Track 1: Fixed QP, Fidelity

  • (https://competitions.codalab.org/competitions/28033)

视频采用 HM 16.20 的默认 LDP 配置压缩,设置 QP = 37,参赛方法根据 PSNR 提升排名

  • Track 2: Fixed QP, Perceptual

  • (https://competitions.codalab.org/competitions/28034)

视频采用 HM 16.20 的默认 LDP 配置压缩,设置 QP = 37,参赛方法根据 MOS 分数排名

  • Track 3: Fixed bit-rate, Fidelity

  • (https://competitions.codalab.org/competitions/28035)

视频采用 FFMpeg 的 x265 固定码率为 200 kbps 压缩,参赛方法根据 PSNR 提升排名

2. 数据库

Large-scale Diverse Video (LDV) Dataset

本竞赛使用新提出的 LDV 数据库,该数据库包含 240 个视频,在视频内容、帧间运动、拍摄方式、光线亮暗和帧率等方面有较好的多样性,如下图所示:

LDV 数据库的视频多样性

LDV 数据库视频示例

数据库链接见于上文竞赛主页,如该数据库对您的研究有所帮助,请引用:

@inproceedings{yang2021dataset,
title={{NTIRE 2021} Challenge on Quality Enhancement of Compressed Video: Dataset and Study},
author={Ren Yang and Radu Timofte},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year={2021}
}

@inproceedings{yang2021ntire,
title={{NTIRE 2021} Challenge on Quality Enhancement of Compressed Video: Methods and Results},
author={Ren Yang and Radu Timofte and others},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year={2021}
}

3. 方法及结果

竞赛结果汇总如下:

由上表可见,所有参赛方法均对压缩视频的质量有明显提升,且均好于 MFQE、QE-CNN 等原有方法。NTU-SLab 和 BILIBILI AI & FDU 参赛组在三个赛道均排名 TOP 2,其中 NTU-SLab 时间复杂度更低,泛化能力更强。

VUE、NOAHTCH、MT.MaxClear、Gogoing、Shannon 和 Block2Rock 参赛队在至少一个赛道排名 TOP 5,Ivp-tencent 的模型是唯一达到 >1 fps 的视频质量增强方法,其速度可达 120 fps,并实现与原有方法 MFQE 相似甚至更好的质量增强效果。

参赛方法的详细介绍及结果分析见于方法及结果汇总报告(链接见上文)

我们尽量争取更多方法的开源代码和模型,并在竞赛主页随时更新。

最后感谢所有参赛队(包括注册但未提交最终结果的)对我们的大力支持,感谢赞助商和参与主观实验的志愿者。希望本竞赛能够对该领域的研究起到推动作用,并对未来的研究有所启发。

备注:增强

图像与视频增强交流群

扫码备注拉你入群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值