浙大三维视觉团队提出Animatable NeRF,从RGB视频中重建可驱动人体模型 (ICCV'21)

关注公众号,发现CV技术之美

本文经作者授权转载自知乎:

https://zhuanlan.zhihu.com/p/421072327

我们介绍一篇2021 ICCV的人体重建论文:Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies,该论文由浙江大学CAD&CG国家重点实验室/浙大-商汤三维视觉联合实验室提出。

e88c91c2e1090bfaf339b3d7206ff9c8.png
论文:https://arxiv.org/abs/2105.02872
代码:https://github.com/zju3dv/animatable_nerf
Project page:https://zju3dv.github.io/animatable_nerf/

01

引言

1.1 论文的问题描述

输入一段稀疏多视角的视频,论文希望生成一个可驱动的人体模型,也就是输入新的人体姿态,可以生成相应姿态下的人体图片,而且可以生成自由视点下的图片。该问题有很多应用,比如自由视角观赛、虚拟视频会议、影视制作。下面是论文的一个结果。

1.2 当前方法在这个问题的局限性

最近CVPR 2021有一些工作尝试解决这个问题。Neural Body [3]提出结构化隐变量,将neural radiance fields和参数化人体模型相结合,使得他可以表示动态人体。虽然Neural Body在训练过的人体姿态上效果很好,他在未见过的人体姿态上生成的图片很扭曲,效果不好。

050d212596aed786465f398eef2e411e.png

CVPR 2021的另一个工作D-NeRF [4]尝试用另一种方式来表示动态人体。他把视频表示为一个标准人体模型和一组变形场。这里的标准人体模型用neural radiance field表示。变形场把各个视频帧的空间坐标和标准坐标系建立dense correspondences。

D-NeRF的表示虽然更有解释性,但他有两个limitations。一个是D-NeRF用translational vector表示deformation,有很高的自由度,导致从RGB视频优化网络很容易收敛到局部最优点。一个是D-NeRF用网络预测translational vector,导致他无法泛化到新的人体姿态上。

e4a67ab1be8e6973236c9f5cd7c56db4.png


1.3 我们的观察和对问题的解决

为了解决之前方法的问题,我们提出用线性蒙皮模型来表示变形场。对于一个视频帧,我们用EasyMocap检测它的3维人体骨架。我们用网络预测视频帧空间中三维点的蒙皮权重,然后和人体骨架计算蒙皮公式,将三维点转到标准空间。

cd37cc9e94ffa9aa601f67586cf9233a.png

线性蒙皮模型相对于D-NeRF使用的translational vector field有两个优势:

1. 人体骨架可以从图片中检测,我们只需要优化蒙皮权重场。这使得我们在不需要复杂的regularization technique也能从图片中优化得到变形场。

2. 当人体模型训练完成后,可以用新的人体骨架进行驱动。


02

论文方法

2.1 Overview of the proposed pipeline

论文将视频表示为一个标准人体模型和一组变形场,其中变形场用线性蒙皮模型表示。具体步骤为:

1. 给定一个视频帧空间的三维点,论文在视频帧坐标系定义了一个neural blend weight field,使用全连接网络将三维点映射为蒙皮权重。

2. 输入当前视频帧下的人体骨架,生成变换矩阵,使用线性蒙皮模型将三维点转回标准坐标系。

3. 论文在标准坐标系上定义了一个neural radiance field。对于变换后的点,我们用neural radiance field预测三维点的volume density和color。

67ec653a299768bb81659fb6404b5767.png


2.2 Neural blend weight field

我们发现如果让网络直接输出蒙皮权重,会容易收敛到局部最小值。为了解决这个问题,我们首先对任意三维点赋予一个初始化的SMPL蒙皮权重,然后用网络预测一个残差值,两者得到最终的蒙皮权重。

49e859d6fed21d00107ad2dd6d2f8dd1.png


2.3 Training and animation

在训练时,论文通过最小化渲染图片和观察图片的误差来进行网络参数的学习。除此之外,我们在标准人体坐标系中学习了一个neural blend weight field。论文通过约束让视频帧坐标系和标准坐标系的对应点的blend weight相同来学习标准坐标系下的neural blend weight field。

1032d6eb662451e734384df0c86b1872.png

在驱动人体模型时,我们需要优化视频帧坐标系下的neural blend weight field。这个也是通过约束视频帧坐标系和标准坐标系的对应点的blend weight相同来进行训练。需要注意的是,标准坐标系的neural blend weight field在驱动人体模型时参数是固定的。

03

实验分析

3.1 Ablation study

我们比较了使用neural blend weight和SMPL blend weight的效果,发现neural blend blend weight大大提高了渲染效果。

我们可视化了网络学习的blend weight的残差值,可以看到网络主要改进了拥有SMPL不能精细描述的区域,比如脖子、手部、胸部和裤子。

2783d5ed54401971c704e7e94d42e4f6.png


3.2 与其他方法的比较

论文在Human3.6M和ZJU-MoCap数据集上进行了和Neural Textures [1], Neural Human Rendering [2], Neural Body [3]的比较。数值结果上Animatable NeRF远远超过之前的方法。

d09c0abcbfeba24847a585e8f1e5a8e0.png



参考文献

[1] Thies, Justus, et al. Deferred neural rendering: Image synthesis using neural textures. In ACM TOG, 2019.

[2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

[3] Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

[4] Pumarola, Albert, et al. D-nerf: Neural radiance fields for dynamic scenes. In CVPR, 2021.

c3648b4b35b57cf53dc0d387f6182cd1.png

END

欢迎加入「三维视觉交流群👇备注:3D

d41ab9bc0da08ead3b75c8890ad28fc9.png

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值