顶刊TPAMI 2024 | 北大提出实用、紧致的智能图像压缩感知技术,代码已开源!

关注公众号,发现CV技术之美

本篇分享顶刊 TPAMI 2024 论文Practical Compact Deep Compressed Sensing(实用、紧致的深度压缩感知),北大提出实用、紧致的智能图像压缩感知技术,代码已开源!

e9d69c37842048b8f2df43691639e0e1.png
  • 论文作者:Bin Chen(陈斌) and Jian Zhang†(张健)(†通讯作者)

  • 作者单位:北京大学信息工程学院

  • 发表刊物:IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

  • 发表时间:2024年11月22日

  • 正式版本:https://ieeexplore.ieee.org/document/10763443

  • ArXiv版本:https://arxiv.org/abs/2411.13081

  • 开源代码:https://github.com/Guaishou74851/PCNet


任务背景

压缩感知(Compressed Sensing, CS)是一种信号降采样技术,可大幅节省图像获取成本。CS的核心思想是“无需完整记录图像信息,通过计算即可还原目标图像”。CS的典型应用包括:

  • 降低相机成本:利用廉价设备就能拍摄出高质量图像;

  • 加速医疗成像:将核磁共振成像(MRI)时间从40分钟缩短至10分钟内,减少被检查者的不适;

  • 探索未知世界,助力科学研究:将“看不见”事物变为“看得见”,如观测细胞活动等转瞬即逝的微观现象,以及通过分布式射电望远镜观测银河系中心的黑洞。

CS的数学模型可表示为 ,其中 是原始图像, 是采样矩阵, 是观测值。定义压缩采样率为 。

CS面临两大核心问题:

  1. 如何设计采样矩阵,从而尽可能多地保留图像信息?

  2. 如何设计高效的重建算法,从而精准复原图像内容?

然而,现有CS方法仍存在两方面局限:

  1. 采样矩阵信息保留能力不足:将图像切块,逐块采样,导致观测值信息量有限;

  2. 重建算法的计算开销过大、复原精度有限。


主要贡献

本工作提出了一种实用、紧致的图像压缩感知网络PCNet,具有如下创新点:

  1. 一种新型压缩采样矩阵,能够融合图像的局部与全局特征,从而提高信息保留能力。具体采样过程分两步:首先,用一个小型卷积网络对图像滤波;其次,使用全局矩阵对滤波结果降维,生成压缩观测值;

  2. 一种新型图像重建网络,将传统近端梯度下降(Proximal Gradient Descent,PGD)算法与深度神经网络有机结合,利用先进模块设计显著提升重建精度。

28d08a5a147fa9d18c1b73afb03fc4c6.png
图1:提出的实用、紧致的压缩感知网络PCNet。
16ab0a1bc061e19bbe11335b489210ff.jpeg
图2:提出的协同采样算子。

实验结果

在 Set11、CBSD68、Urban100 和 DIV2K 等基准数据集上,PCNet 的性能显著优于其他方法,特别是在高分辨率(2K、4K、8K)成像任务中。此外,其采样矩阵可拓展至量化CS和自监督CS任务,展现了良好的通用性。

4c27f18a94274e3787d3311b88ccd8f0.png 4fbedfd943513ff1438590a8dd9defdb.jpeg
图3:方法与其他CS方法的对比结果。

更多细节、实验结果与理论分析请参阅论文。


实验室简介

视觉信息智能学习实验室(VILLA)由北京大学信息工程学院张健助理教授于2019年创立并负责,主要围绕“智能可控图像生成”这一前沿领域,深入开展高效图像重建、可控图像生成和精准图像编辑三个关键方向的研究。张健老师带领VILLA团队已在Nature子刊Communications Engineering、IEEE SPM、TPAMI、TIP、IJCV、NeurIPS、ICLR、CVPR、ICCV和ECCV等高水平国际期刊和会议上发表论文100余篇,其中近三年,以第一作者/通讯作者发表CCF A类论文40余篇。张健老师谷歌学术引用1万余次,h-index值为49(单篇一作最高引用1200余次),获得北大青年教师教学比赛一等奖、国际期刊/会议最佳论文奖五次,主持国家科技重大专项课题、国自然重点项目课题、国自然面上以及与字节/华为/OPPO/创维/兔展等知名企业学术合作项目10余项。

在高效图像重建方面,张健老师团队的代表性成果包括优化启发式深度展开重建网络ISTA-Net、COAST、ISTA-Net++,联合学习采样矩阵压缩计算成像方法OPINE-Net、PUERT、CASNet、HerosNet、PCA-CASSI,基于信息流增强机制的高通量广义优化启发式深度展开重建网络HiTDUN、SODAS-Net、MAPUN、DGUNet、SCI3D、PRL、OCTUF、D3C2-Net,以及无需真值的自监督图像重建方法SCNet。团队还提出了基于自适应路径选择机制的动态重建网络DPC-DUN和用于单像素显微荧光计算成像的深度压缩共聚焦显微镜DCCM,以及生成式图像复原方法Panini-Net、PDN、DEAR-GAN、DDNM,受邀在信号处理领域旗舰期刊SPM发表专题综述论文。本工作提出的实用、紧致的压缩感知网络PCNet进一步提升了图像压缩感知的精度与效率。

更多信息可访问VILLA实验室主页(https://villa.jianzhang.tech/)或张健助理教授个人主页(https://jianzhang.tech/cn/)。

作者:陈斌,北京大学博士生
最新 AI 进展报道
请联系:amos@52cv.net

f190b3702f6b55d4a365c63731fc2930.jpeg

END

欢迎加入「图像压缩交流群👇备注:IC

7703cf29f7de096d9ccca2f56d2d425d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值