关注公众号,发现CV技术之美
本次挑战赛同时作为NTIRE研讨会和事件传感器研讨会(Event-based vision workshop)的一部分,与 CVPR 2025 一同举办。
NTIRE(New Trends in Image Restoration and Enhancement)是近年来图像复原领域最具影响力的全球性竞赛之一,官网:https://cvlai.net/ntire/2025/。
事件传感器研讨会(Event-based Vision Workshop)是事件传感器领域最大的研讨会,每两年于CVPR举办一次,会上集中报告事件相机(Event camera)相关最新进展。官网:https://tub-rip.github.io/eventvision2025/。
大赛背景
随着成像技术的进步,事件相机(或称为动态视觉传感器)是一种神经拟态传感器不同于传统图像传感器输出固定帧率的视频,事件相机只对场景中有亮度变化的区域响应。因其超高速响应、低延迟、高动态范围等特性,在计算成像、机器人、自动驾驶、AR/VR等领域受到广泛关注。事件相机可以高效捕捉场景动态变化的信息,并与传统帧图像互补,为解决图像运动模糊等问题提供新的解决方案。
事件辅助的图像去模糊(Event-Based Image Deblurring)任务前提是空间对齐的图像和图像曝光时间内的事件数据,旨在利用事件数据隐藏的运动信息先验,恢复清晰的图像,从而克服运动模糊带来的挑战。
大赛介绍
本次挑战赛的目标是利用事件相机提供的高时间分辨率信息,从模糊的帧图像(Blurred Frame)和事件流(Event Stream)中恢复出清晰的高质量图像。在模型开发阶段,我们发布训练集和验证集,参赛者可使用训练集进行模型训练,并在 CodaLab 平台提交验证集的去模糊结果进行评估。在测试阶段,竞赛组织者将发布测试集,参赛者需使用训练好的模型对测试集的模糊图像进行去模糊处理,并提交最终结果,由组织者进行统一评估和排名。
本次比赛采用帧+事件作为输入,评估指标包括:
峰值信噪比(PSNR):主要评价去模糊后图像的质量。
结构相似度(SSIM):作为辅助指标,衡量去模糊图像与真实图像的相似程度。
大赛官网
NTIRE 官网:https://cvlai.net/ntire/2025/
Event-Based Vision Workshop: https://tub-rip.github.io/eventvision2025/
Github 仓库:https://github.com/AHupuJR/NTIRE2025_EventDeblur_challenge
CodaLab 竞赛平台:https://codalab.lisn.upsaclay.fr/competitions/21498
赛程安排(以官网信息为准)
• 2025.02.05 发布训练数据(包含输入和输出)及验证数据(仅包含输入)
• 2025.02.10 验证服务器上线
• 2025.03.15 发布最终测试数据(仅包含输入)
• 2025.03.21 测试结果提交截止日期
• 2025.03.22 Fact Sheets及代码/可执行文件提交截止日期
• 2025.03.24 向参赛者公布初步测试结果
• 2025.04.01 挑战赛论文提交截止日期
• 2025.06 NTIRE 研讨会及挑战赛结果发布以及颁奖典礼,CVPR workshop
大赛要求
本次挑战赛面向全球开放,欢迎个人、高校、研究机构和企业参加。每位参赛者只能加入 1 支队伍,每支队伍最多不超过 6 人,每支队伍仅能提交1 种算法进行最终排名。
大赛奖励
发表论文为可选项,不会影响参赛或获奖资格。本次挑战赛将邀请排名靠前的团队向NTIRE Workshop提交最多 8 页的论文,接受后将发表在CVPR 2025 Workshop论文集。
排名最高的参赛者以及提出新颖方法的团队将有机会成为挑战赛报告论文的共同作者,并发表在CVPR 2025 Workshop论文集中。本次比赛的赞助商详情见 NTIRE 2025 官网,如有额外的经济奖励或旅行补助,将由 NTIRE 官方统一提供和发放。
大赛组织者
Lei Sun, INSAIT. leo_sun@zju.edu.cn
Peiqi Duan, Peking University, duanqi0001@pku.edu.cn
Boxin Shi, Peking University, shiboxin@pku.edu.cn
Kaiwei Wang, Zhejiang University, wangkaiwei@zju.edu.cn
Guillermo Gallego, TU Berlin, guillermo.gallego@tu-berlin.de
Luc Van Gool, INSAIT, vangool@vision.ee.ethz.ch
Radu Timofte, University of Wurzburg, radu.timofte@uni-wuerzburg.de
微信群二维码
