Medical Image Analysis:医学图像分割最新进展综述

关注公众号,发现CV技术之美

医学图像分割(Medical Imaging Segmentation,MIS)在计算机辅助诊断、治疗规划和疾病监测等领域具有关键作用,但由于数据获取受限、标注复杂、目标结构多样以及模态差异等因素,要得到准确的分割结果依然困难。

本文分享医学图像分割领域的最新综述:Recent Advances in Medical Imaging Segmentation: A Survey,作者来自法国 Univerity of Polytechnique Hauts-de-France 和 Sorbonne University Abu Dhabi ,原文发表在《Medical Image Analysis》期刊。

  • 论文地址:https://arxiv.org/abs/2505.09274

  • 相关仓库:https://github.com/faresbougourzi/Awesome-DL-for-Medical-Imaging-Segmentation


一、医学图像分割的挑战

  • 数据获取困难:隐私法规限制共享;像素级标注耗时费力,需多位专家反复校验,标注要求极高。

  • 类别不平衡与噪声干扰:少数类(如病灶)出现频率低,图像常含低对比度、弱边界和成像伪影。

  • 泛化能力弱:不同设备、模态和患者间存在“域偏移”,模型迁移性差。

  • 计算资源需求高:深度学习模型通常庞大,对数据和算力要求高,不利于临床部署。

医学影响分割模态多样性与特性变化示例
医学影响分割模态多样性与特性变化示例
本文讨论的MIS的现实挑战
本文讨论的MIS的现实挑战

二、生成式AI在医学图像分割中的应用

生成模型(如 GAN、扩散模型)通过生成逼真样本来增强数据集、提升模型泛化能力,主要应用包括:

1. 生成对抗网络(GAN)

GAN 由生成器和判别器组成,核心思想是“以假乱真”地生成图像:

  • CycleGAN:可实现CT-MRI之间的图像翻译,结合形状一致性损失,有助于跨模态学习。

  • 对抗式训练分割网络:如 DAN 框架,引入判别器协助利用未标注数据。

GANs
GANs

2. 扩散模型(DDPM)

通过加噪再去噪的过程生成图像:

  • MedSegDiff:采用双编码器结构,引入傅里叶降噪和注意力机制,生成更精确的分割掩码。

  • 混合模型:将GAN与DDPM结合,提升对复杂结构(如血管)的分割性能。

扩散模型的一般过程
扩散模型的一般过程
生成模型在MIS中的应用
生成模型在MIS中的应用
生成模型在MIS应用中的SOTA
生成模型在MIS应用中的SOTA

生成式AI应用总结:

  • 用于数据增强、风格迁移、无监督/自监督学习。

  • 已在多个任务中与监督方法性能相当,但仍需标准化评测以全面比较不同方法效果。


三、少样本学习(FSS)在医学图像中的应用

少样本分割(Few-Shot Segmentation)致力于用极少量标注样本识别新类别,具有极大现实意义:

原理简介:

  • 使用支持集(含k张已标注图像)指导模型对查询图像进行新类别分割。

  • 采用任务驱动训练(episodic training),训练与测试类别互不重叠。

应用案例:

  • Visceral数据集:早期工作通过一张支持图像完成肝、脾、肾等器官分割。

  • St1/St2-Abd-CT/MRI等设置:多个工作采用统一评估协议,便于比较。

  • 跨机构学习(如Prostate-MRI):增强了模型在不同设备和数据源间的泛化能力。

主流方法:

  • 原型网络(Prototypical Network):提取支持集原型向量,对查询图像进行相似度匹配。

原型网络
原型网络
  • 条件网络(Conditional Network):根据支持图像生成参数,调节查询图像分割过程。

条件网络
条件网络
  • 混合方法:结合空间引导、注意力机制、解剖先验等辅助模块,提升性能。

MIS中的小样本学习总结
MIS中的小样本学习总结

持续挑战:

  • 分割边界模糊、背景结构复杂;

  • 目前多集中于少数类器官,任务种类单一;

  • 各方法评测协议略有差异,影响公平比较。


四、基础模型(SAM)在医学图像分割中的适配与挑战

基础模型(Foundation Models)具备“即插即用”的潜力。代表性模型 SAM(Segment Anything Model) 是由 Meta 推出的通用分割模型,可根据点、框或文本提示输出掩码。

SAM架构:

  • 图像编码器:基于ViT,提取全图特征;

  • 提示编码器:处理用户输入(点、框、掩码或文本);

  • 掩码解码器:融合图像与提示,生成最终分割掩码。

SAM的一般过程
SAM的一般过程
MIS 中的基础模型总结

医学图像中的应用方式:

  • 零样本评估:直接测试原始SAM性能,发现对结构明确的目标表现较好。

  • 参数高效微调(PEFT):冻结主干,仅微调部分模块以适配医学任务;

  • 自动提示生成:利用检测或特征相似性方法自动生成提示,减少人工干预;

  • 3D拓展版本:适应医学图像的体积特性,提升分割效果。

存在问题:

  • 对低对比度、边界模糊的结构表现欠佳;

  • 未能充分利用交互式提示的优势;

  • 仍需优化计算效率以适应临床场景。


五、通用模型(Universal Models)趋势

通用模型追求“一模多用”,不再为每类结构训练一个专属模型,而是通过提示、示例或上下文信息完成跨模态/任务分割。

通用模型的总体架构

应用方向:

  • 上下文学习:借鉴NLP中GPT方式,通过示例推理新任务;

  • 多模态融合:将图像与文本信息联合建模,提升跨模态理解能力;

  • 少样本适应能力强:可快速适应新结构、模态,减少重训需求。


六、技术瓶颈与未来方向

尽管取得多项进展,医学图像分割仍面临若干待解难题:

  • 缺乏标准化评估体系:不同研究使用不同数据、协议,不利于方法横向比较;

  • 数据隐私问题突出:共享困难、标注稀缺,需借助合成数据、联邦学习等新技术;

  • 人机协作不足:未来模型需支持更流畅的交互方式,实现医生辅助与主动学习;

  • 临床部署难度高:模型复杂、对资源依赖大,亟需轻量、高效、可解释的部署方案。


结语

随着生成式AI、少样本学习、基础模型与通用模型等方向的不断演进,医学图像分割正逐步向着高精度、低依赖、高泛化的目标迈进。未来,需要在标准化评估、跨域适应、模型交互与临床落地等维度持续发力,推动图像分割技术从实验室走向真实医疗场景。

最新 AI 进展报道
请联系:amos@52cv.net

END

欢迎加入「医学影像交流群👇备注:Med

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值