自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (81)
  • 论坛 (1)

转载 推荐一个最近开源的Matting工具箱

最近工作中在研究抠像(chroma key),使用幕布进行抠图,这个领域和学术界Matting类似,都是在像素级进行图像分割,但比Matting要简单一点,毕竟背景更固定。当然做好,也不...

2017-06-21 17:24:16 80

人脸识别现有应用介绍

人脸识别现有应用介绍 人脸识别 汉王 飞瑞斯 中控

2011-01-17

采用LBP金字塔的人脸描述与识别

采用LBP金字塔的人脸描述与识别脸识别 多尺度分析 LBP金字塔 直方图

2010-09-25

handwriten digit recognition by combined classifiers

UCI多特征数据库的原始文献,handwriten digit recognition by combined classifiers

2010-09-25

Automatic visual/IR image registration

A feature-based approach to visual/IR sensor image registra- tion is presented.This new method overcomes the difficulties caused by the discrepancy in data’s gray-scale characteristics and the problem of feature inconsistency.It employs a wavelet-based feature extractor to locate point features from contours based on local statistics of the image intensity.Matching is carried out at multiresolution levels based on point features.A consistency-checking step is involved to eliminate mis- matches.The algorithm is accurate,robust,and fast.It is capable of handling images with considerable translation,scaling,and rotation.De- tails on the registration algorithm including feature extraction,matching, consistency checking,and the image transformation model are dis- cussed.Experimental results using real visual/IR sensor data are presented.

2010-09-25

Statistical Pattern Recognition:A Review

The primary goal of pattern recognition is supervised or unsupervised classification.Among the various frameworks in which pattern recognition has been traditionally formulated,the statistical approach has been most intensively studied and used in practice.More recently,neural network techniques and methods imported from statistical learning theory have been receiving increasing attention.The design of a recognition system requires careful attention to the following issues:definition of pattern classes, sensing environment,pattern representation,feature extraction and selection,cluster analysis,classifier design and learning,selection of training and test samples,and performance evaluation.In spite of almost 50 years of research and development in this field,the general problem of recognizing complex patterns with arbitrary orientation,location,and scale remains unsolved.New and emerging applications,such as data mining,web searching,retrieval of multimedia data,face recognition,and cursive handwriting recognition, require robust and efficient pattern recognition techniques.The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

2010-09-25

LBP相关文献及Matlab程序

LBP相关文献及Matlab程序LBP文献 Matlab程序

2010-09-25

LBP人脸识别Yale数据库

LBP人脸识别Yale数据库,LBP 人脸识别 Yale数据库 matlab数据和程序 不是我写的。

2010-09-25

基于组合特征的车牌字符识别

车牌字符识别 Zernike矩 小波变换 特征提取 基于组合特征的车牌字符识别

2010-09-25

结合Zernike矩的多尺度模板形状匹配

结合Zernike矩的多尺度模板形状匹配,目标识别 形状匹配 小波变换 Zernike矩 。

2010-09-25

Zernike矩的快速算法

Zernike矩的快速算法,论文,可以参考下。

2010-09-25

联机手写数字识别程序

联机手写数字识别程序,不是我写的,分享一下。

2010-09-25

2010年第七届全国研究生数学建模竞赛试题与附件

2010年第七届全国研究生数学建模竞赛试题与附件包括ABCD四题

2010-09-17

文件批量命名工具FileBatchRemaerExe

文件批量命名工具 FileBatchRemaerExe

2010-07-31

OpenCV1.2安装文件

OpenCV1.2安装文件,计算机视觉开源函数库。

2010-07-31

rgb2hsi转换函数Matlab

图像从RGB空间转换到HSI空间,Matlab函数

2010-07-31

流形学习问题manifold study

线性维数约简方法 流形和维数约简. 流形学习的一些数学基础. 几种流形学习算法简介:LLE, Isomap, Laplacian Eigenmap. 流形学习问题的简单探讨.

2010-06-29

贝叶斯决策理论机器学习数据挖掘

贝叶斯分类器 正态分布决策理论 关于分类的错误率分析 最小风险Bayes分类器 Bayes分类器算法和例题 聂曼-皮尔逊判别准则 最大最小判别准则 决策树 序贯分类

2010-06-29

MathematicalProblemsinImageProcessing

Contents Foreword vii Preface to the Second Edition xi Preface to the First Edition xv Guide to the Main Mathematical Concepts and Their Application xxv Notation and Symbols xxvii 1 Introduction 1 1.1 The Image Society.....................1 1.2 What Is a Digital Image?..................3 1.3 About Partial Di?erential Equations(PDEs).......5 1.4 Detailed Plan........................5 2 Mathematical Preliminaries 29 How to Read This Chapter....................29 2.1 The Direct Method in the Calculus of Variations.....30 2.1.1 Topologies on Banach Spaces...........30 2.1.2 Convexity and Lower Semicontinuity.......32 2.1.3 Relaxation......................37 2.1.4 AboutΓ-Convergence................40 2.2 The Space of Functions of Bounded Variation......42xx Contents 2.2.1 Basic Definitions on Measures...........43 2.2.2 Definition of BV(?)................45 2.2.3 Properties of BV(?)................46 2.2.4 Convex Functions of Measures...........50 2.3 Viscosity Solutions in PDEs................50 2.3.1 About the Eikonal Equation............50 2.3.2 Definition of Viscosity Solutions..........52 2.3.3 About the Existence................54 2.3.4 About the Uniqueness...............55 2.4 Elements of Di?erential Geometry:Curvature......57 2.4.1 Parametrized Curves................58 2.4.2 Curves as Isolevel of a Function u.........58 2.4.3 Images as Surfaces.................59 2.5 Other Classical Results Used in This Book........60 2.5.1 Inequalities.....................60 2.5.2 Calculus Facts....................62 2.5.3 About Convolution and Smoothing........62 2.5.4 Uniform Convergence................63 2.5.5 Dominated Convergence Theorem.........64 2.5.6 Well-Posed Problems................64 3 Image Restoration 65 How to Read This Chapter....................65 3.1 Image Degradation.....................66 3.2 The Energy Method.....................68 3.2.1 An Inverse Problem.................68 3.2.2 Regularization of the Problem...........69 3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem.............72 3.2.4 Toward the Numerical Approximation......76 The Projection Approach..............76 The Half-Quadratic Minimization Approach...79 3.2.5 Some Invariances and the Role ofλ........87 3.2.6 Some Remarks on the Nonconvex Case......90 3.3 PDE-Based Methods....................94 3.3.1 Smoothing PDEs..................95 The Heat Equation.................95 Nonlinear Di?usion.................98 The Alvarez–Guichard–Lions–Morel Scale Space Theory.................107 Weickert’s Approach................113 Surface Based Approaches.............117 3.3.2 Smoothing–Enhancing PDEs............121 The Perona and Malik Model...........121Contents xxi Regularization of the Perona and Malik Model: Catt′e et al......................123 3.3.3 Enhancing PDEs..................128 The Osher and Rudin Shock Filters........128 A Case Study:Construction of a Solution by the Method of Characteristics...........130 Comments on the Shock-Filter Equation.....134 3.3.4 Neighborhood Filters,Nonlocal Means Algorithm, and PDEs......................137 Neighborhood Filters................138 How to Suppress the Staircase E?ect?......143 Nonlocal Means Filter(NL-Means)........146 4 The Segmentation Problem 149 How to Read This Chapter....................149 4.1 Definition and Objectives..................150 4.2 The Mumford and Shah Functional............153 4.2.1 A Minimization Problem..............153 4.2.2 The Mathematical Framework for the Existence of a Solution...............154 4.2.3 Regularity of the Edge Set.............162 4.2.4 Approximations of the Mumford and Shah Functional......................166 4.2.5 Experimental Results................171 4.3 Geodesic Active Contours and the Level-Set Method...173 4.3.1 The Kass–Witkin–Terzopoulos model.......173 4.3.2 The Geodesic Active Contours Model.......175 4.3.3 The Level-Set Method...............182 4.3.4 The Reinitialization Equation...........194 Characterization of the Distance Function....195 Existence and Uniqueness.............198 4.3.5 Experimental Results................206 4.3.6 About Some Recent Advances...........208 Global Stopping Criterion.............208 Toward More General Shape Representation...211 5 Other Challenging Applications 213 How to Read This Chapter....................213 5.1 Reinventing Some Image Parts by Inpainting.......215 5.1.1 Introduction.....................215 5.1.2 Variational Models.................216 The Masnou and Morel Approach.........216 The Ballester et al.Approach...........218 The Chan and Shen Total Variation Minimization Approach.................220xxii Contents 5.1.3 PDE-Based Approaches..............222 The Bertalmio et al.Approach...........223 The Chan and Shen Curvature-Driven Di?usion Approach.................224 5.1.4 Discussion......................225 5.2 Decomposing an Image into Geometry and Texture...228 5.2.1 Introduction.....................228 5.2.2 A Space for Modeling Oscillating Patterns....229 5.2.3 Meyer’s Model....................232 5.2.4 An Algorithm to Solve Meyer’s Model......233 Prior Numerical Contribution...........234 The Aujol et al.Approach.............234 Study of the Asymptotic Case...........241 Back to Meyer’s Model...............242 5.2.5 Experimental Results................245 Denoising Capabilities...............245 Dealing With Texture...............248 5.2.6 About Some Recent Advances...........248 5.3 Sequence Analysis......................249 5.3.1 Introduction.....................249 5.3.2 The Optical Flow:An Apparent Motion.....250 The Optical Flow Constraint(OFC).......252 Solving the Aperture Problem...........253 Overview of a Discontinuity-Preserving Variational Approach................256 Alternatives to the OFC..............260 5.3.3 Sequence Segmentation...............261 Introduction.....................261 A Variational Formulation.............264 Mathematical Study of the Time-Sampled Energy...............265 Experiments.....................269 5.3.4 Sequence Restoration................271 Principles of Video Inpainting...........276 Total Variation(TV)Minimization Approach..277 Motion Compensated(MC)Inpainting......277 5.4 Image Classification.....................281 5.4.1 Introduction.....................281 5.4.2 A Level-Set Approach for Image Classification.................282 5.4.3 A Variational Model for Image Classification and Restoration.....................290 5.5 Vector-Valued Images....................299 5.5.1 Introduction.....................299 5.5.2 An Extended Notion of Gradient.........300Contents xxiii 5.5.3 The Energy Method................300 5.5.4 PDE-Based Methods................302 A Introduction to Finite Di?erence Methods 307 How to Read This Chapter....................307 A.1 Definitions and Theoretical Considerations Illustrated by the 1-D Parabolic Heat Equation............308 A.1.1 Getting Started...................308 A.1.2 Convergence.....................311 A.1.3 The Lax Theorem..................313 A.1.4 Consistency.....................313 A.1.5 Stability.......................315 A.2 Hyperbolic Equations....................320 A.3 Di?erence Schemes in Image Analysis...........329 A.3.1 Getting Started...................329 A.3.2 Image Restoration by Energy Minimization...333 A.3.3 Image Enhancement by the Osher and Rudin Shock Filters....................336 A.3.4 Curve Evolution with the Level-Set Method...338 Mean Curvature Motion..............339 Constant Speed Evolution.............340 The Pure Advection Equation...........341 Image Segmentation by the Geodesic Active Contour Model...............342 B Experiment Yourself!343 How to Read This Chapter....................343 B.1 The CImg Library......................344 B.2 What Is Available Online?.................344 References 349 Index 373

2010-06-25

OpenCV1.0安装文件

在VC6下配置OpenCV1.0文档。 http://www.opencv.org.cn/index.php/VC6%E4%B8%8B%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AEOpenCV1.0

2010-06-25

表达式求值C++代码

表达式求值C++代码,我测试过,挺好用。遇到类似问题,可以参考一下。

2010-06-13

支持基本RichText编辑功能的消息应用程序附件

注意:这个资源是中兴捧月的一题,我保存下来自己看的,网上可以找到,大家就不要下载了吧 请基于高通BREW SDK及模拟器开发包,为类似手机设备这样的小型终端,设计一个支持基本的RichText编辑功能的类似短消息的brew应用程序。 初赛要求: 1、 该应用第一阶段至少支持消息内容的编辑功能,消息的保存和阅读、删除功能。在编辑界面的任意位置可以实现字符,动画,图片,铃音的插入和删除功能。如下图: 2、 界面一级菜单至少包含:新建消息,草稿箱,帮助 3、 实现一个编辑功能BREW接口控件,至少支持以下要求: (1)编辑内容时能输入文本,并能设置文本的字体大小(大字体、小字体两种) (2)编辑内容时能能插入图片,图片格式为BMP文件,32x32像素,256色 (3)编辑内容时能插入动画,动画格式为4幅(2)要求BMP的图片,当光标移动到动画位置时,能播放动画,当光标移开时,停止播放 (4)编辑内容时能插入铃音,铃音格式为标准MIDI文件,大小32k以内,当光标移动到铃音位置时能够播放铃音,当光标移开时,停止播放 4、 能将编辑的内容保存到一个草稿箱消息文件,该文件格式可以自己定义,但要保证文本、图片、声音的数据保存完整 5、 支持草稿箱阅读保存的内容。所有输入内容能正常显示、播放 6、 支持草稿箱删除消息功能 实现技术提示信息: BREW SDK 模拟器可以在windows操作系统平台直接运行,可以结合visual studio 6.0 IDE 环境方便代码工程管理和代码调试。BREW应用开发语言为C语言。 BREW SDK已经提供了接口,支持了BMP图片显示及MIDI文件的播放。 参考资料信息: 可从https://brewx.qualcomm.com/brew/sdk/download.jsp,高通公司的官方网站下载安装。进入网站下载页面后,用自己的电子邮箱地址注册帐号,即可下载BREW SDK。 BREW SDK中已携带参考文档: 1) 《BREWSDKUserDocs.chm》 2) 《BREWAPIReference.chm》 3) 《BREWSDKUserDocs.chm》 3GPP TS 23.040 V530文档(请见附件): www.3GPP.org,也可在网上找到该文档的其他版本 审核标准: 1、 设计文档是否有效解决了题目问题,是否清晰反映了设计者的设计思路,文档结构组织是否合理 2、 参赛程序对题目所要求功能的实现程度 3、 参赛作品是否具有很好的可读性和运行效率,资源占用情况是否合适

2010-06-09

南京理工大学计算机学院复试上机编程题目

南京理工大学计算机学院复试上机编程题目,需要的可以看看。不过这是前几年的。

2010-05-28

南京理工大学数据库系统

南京理工大学数据库系统课件和部分练习题,考研的同学可以参考一下。

2010-05-28

南京理工大学数据结构

南京理工大学数据结构,考研的同学可以参考一下。

2010-05-28

南京理工软件工程讲稿

南京理工软件工程讲稿,考研的可以参考一下。

2010-05-28

南京理工大学操作系统课件

南京理工大学 操作系统 课件,考研的同学可以下载参考。

2010-05-28

南京理工大学计算机网络课件

南京理工大学计算机网络课件, computer networking,考研的同学可以参考。

2010-05-28

数学建模个人经验谈共九个部分

包括:组队和分工,选题,文献资料查找,论文写作,培训,实践,如何写好数学建模论文和一些个人心得。 不是我写的。 大家备战数模的可以参考一下。 我在本科阶段没有参加过数学建模,因为有一种畏惧感,觉得那是数学学得很好的人才能做得来的。研究生阶段第一次抱着试一试的心态参加了第六届研究生数模,个人感觉没有想象中的那么难,而且所解决的问题很有挑战性也比较有价值,最终拿了个三等奖。 研究生建模竞赛的好处是:自己组队,没有指导老师,不会有为了学校获奖老师给学生出方案的情况(可能也会有,不过是不被允许的),更客观。 总的来讲,数学建模是体现一个人综合解决问题能力的一个平台,研究生数学建模竞赛更是有很多科研的成分,很有挑战性。

2010-05-19

2010成都信息工程学院研究生数模赛题

投票倾向问题 2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题

2010-05-19

weka使用教程中文版

目录 1. 简介2. 数据格式3.数据准备4. 关联规则(购物篮分析)5. 分类与回归6. 聚类分析

2010-05-19

实对称矩阵对角化含Matlab代码

实对称矩阵,对角化,有两篇论文,内含Matlab实现代码,在文章里的,可以直接写下来使用。测试过,还可以。

2010-05-19

经过裁剪预处理的面部表情识别研究用JAFFE数据库

网上JAFFE数据库几乎都是原始数据库,未经人脸裁剪/人脸剪切的,这个数据库是经过预处理的,已经将人脸利于面部表情识别的部分剪切出来,并存成64*82大小图像(详细裁剪算法请参考张一鸣,《面部表情识别》,该裁剪程序可在我的另一个资源里找到),按照类别分成7组,并详细标明各组所属表情分类,可直接用于面部表情识别实验。

2010-05-12

人脸面部表情识别日本jaffe数据库

人脸表情识别日本jaffe数据库,是表情识别领域应用最为广发的一个数据库之一,总共包含7种表情。

2010-05-12

人脸表情识别论文人脸预处理人脸检测裁剪特征提取模式分类

是篇硕士论文,详细介绍了人脸表情识别的预处理,特征提取,分类识别和系统设计各个阶段,是表情识别入门读物。

2010-05-12

人脸表情识别预处理人脸裁剪系统Face Cropping人脸裁切

该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪系统,因为大部分人脸表情数据库都是未经裁剪/裁切的,而去除背景是人脸表情识别预处理的重要一步。网上有很多人脸数据库,但大部分是未经裁剪/人脸裁切处理的,不能直接用于人脸表情识别试验。 该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪的,而去除背景是人脸表情识别预处理的重要一步。 图像归一化为64*82大小,归一化方案请参见张一鸣,《人脸表情识别》。采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些.tif图像可能会出问题。

2010-05-12

人脸识别预处理人脸裁剪系统Face Cropping人脸裁切

网上有很多人脸数据库,但大部分是未经裁剪处理的,不能直接用于人脸识别试验。而整个网络也几乎找不到人脸裁剪/人脸裁切的工具,广大初入人脸识别研究领域的人不知如何入手。 该程序是为人脸识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪/裁切的,而去除背景是人脸识别预处理的重要一步。 采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些特殊格式的.tif图像可能会出问题。

2010-05-12

kMeansCluster k均值聚类算法Matlab代码实现

kMeansCluster k均值聚类算法Matlab代码实现,聚类里的经典算法。可以参考应用。

2010-05-09

实对称矩阵相似对角化Matlab程序

实对称矩阵相似对角化Matlab程序,用到的朋友可以下载看看。

2010-05-07

人脸识别研究用ORL数据库

人脸识别 ORL数据库 图像和.mat数据 不需裁剪和预处理可直接用于实验。

2010-05-06

经过裁剪预处理的人脸识别研究用FERET数据库

经过裁剪预处理的人脸识别研究用FERET数据库(美国军方数据库),共有200个人,每个人7幅图像,包括图像和.mat数据,可以直接用于人脸识别实验。

2010-05-06

谁能详细介绍下判别模型和生成模型?

发表于 2011-11-23 最后回复 2011-11-23

空空如也
提示
确定要删除当前文章?
取消 删除