18、图像风格迁移与强化学习:从理论到实践

图像风格迁移与强化学习:从理论到实践

1. 总变差损失

在图像风格迁移的基础实现中,存在一个缺点,即会产生大量高频伪影。为了减少这些伪影,可以在图像的高频分量上使用显式的正则化项,这在风格迁移中通常被称为总变差损失。

1.1 高频分量检测

可以通过以下函数计算图像在 x 和 y 方向上的高频分量:

def high_pass_x_y(image):
    x_var = image[:,:,1:,:] - image[:,:,:-1,:]
    y_var = image[:,1:,:,:] - image[:,:-1,:,:]
    return x_var, y_var

通过这个函数,可以观察到原始图像和风格化图像的高频分量的变化。例如:

x_deltas, y_deltas = high_pass_x_y(content_image)
plt.figure(figsize=(14,10))
plt.subplot(2,2,1)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Original")
plt.subplot(2,2,2)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Original")
x_deltas, y_deltas = high_pass_x_y(image)
plt.subplot(2,2,3)
imshow(clip_0_1(2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值