图像风格迁移与强化学习:从理论到实践
1. 总变差损失
在图像风格迁移的基础实现中,存在一个缺点,即会产生大量高频伪影。为了减少这些伪影,可以在图像的高频分量上使用显式的正则化项,这在风格迁移中通常被称为总变差损失。
1.1 高频分量检测
可以通过以下函数计算图像在 x 和 y 方向上的高频分量:
def high_pass_x_y(image):
x_var = image[:,:,1:,:] - image[:,:,:-1,:]
y_var = image[:,1:,:,:] - image[:,:-1,:,:]
return x_var, y_var
通过这个函数,可以观察到原始图像和风格化图像的高频分量的变化。例如:
x_deltas, y_deltas = high_pass_x_y(content_image)
plt.figure(figsize=(14,10))
plt.subplot(2,2,1)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Original")
plt.subplot(2,2,2)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Original")
x_deltas, y_deltas = high_pass_x_y(image)
plt.subplot(2,2,3)
imshow(clip_0_1(2
订阅专栏 解锁全文
904

被折叠的 条评论
为什么被折叠?



