动态规划与贪心算法之课程安排问题

本文探讨了动态规划和贪心算法在解决课程安排问题的应用。通过实例展示了如何利用动态规划找到使上课人数最多的解决方案,并解释了贪心算法在此类问题中的局限性和适用条件。动态规划算法通过递归表达式确定最优解,而贪心策略则依赖于每次选择最早结束的课程以达到全局最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划算法与贪心算法之课程安排问题

  1. 动态规划算法之课程安排
    问题:教务处给某一个教室安排课程,有很多老师都想来这个教室教授他们各自的课。假如第 i 位老师讲的第 Ai 门课程,课程开始时间 Si ,结束时间为 Fi 。那么教务处的老师就要利用这个时间如何安排课程,使得来这间教室上课的人数最多?
    举个例子:
    这里写图片描述
    最底下为时间轴,每条黑线代表一门课程。我们用 W 表示该课程有多少学生。我们看教务处安排最多有多少人来该教室上课。
    分析:课程太多我无从下手。看能不能分成子问题求解。先DandC,然后DP。我们把求解过程看出一系列决策过程,在每个步骤我们都要选一门课程。假装我们已经拿到了最优决策方案,我现在就想知道最优解中最后一个决策到底是什么?也就是 An 你是选了还是
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值