(八)树—二叉树的遍历查找删除

1、基本介绍

 

  •  二叉树的遍历

  • 二叉树的查找

  • 二叉树的删除

2、应用实例(二叉树的遍历查找删除)

package tree;

public class BinaryTreeDemo {
    public static void main(String[] args) {
        //  先构建一棵空二叉树
        BinaryTree tree = new BinaryTree();

        TreeNode root = new TreeNode(1,  "1号苹果");
        TreeNode node2 = new TreeNode(2, "2号苹果");
        TreeNode node3 = new TreeNode(3, "3号苹果");
        TreeNode node4 = new TreeNode(4, "4号苹果");
        root.left = node2;
        root.right = node3;
        node3.right = node4;

        //  创建二叉树
        tree.root = root;

        //  遍历二叉树
        tree.preOrderTraverse();
        tree.inOrderTraverse();
        tree.postOrderTraverse();

        //  查找指定树节点
        TreeNode temp1 = tree.preOrderSearch(3);
        TreeNode temp2 = tree.inOrderSearch(2);
        TreeNode temp3 = tree.postOrderSearch(4);
        if (temp1 != null) {
            System.out.println("查找成功! => 该结点的name="+temp1.name);
        } else {
            System.out.println("查找失败!");
        }
        if (temp2 != null) {
            System.out.println("查找成功! => 该结点的name="+temp2.name);
        } else {
            System.out.println("查找失败!");
        }
        if (temp3 != null) {
            System.out.println("查找成功! => 该结点的name="+temp3.name);
        } else {
            System.out.println("查找失败!");
        }


        System.out.println("------------------------------");
        //  删除节点
        tree.deleteNode(2);
        tree.deleteNode(3);
        tree.deleteNode(1);
        //  遍历二叉树
        tree.preOrderTraverse();
        tree.inOrderTraverse();
        tree.postOrderTraverse();
    }

}


//  二叉树
class BinaryTree {
    public TreeNode root;
    /*
            规定:
                如果删除的节点是叶子节点,则删除该节点
                如果删除的节点是非叶子节点,则删除该子树
     */
    public void  deleteNode(int no) {
       if (this.root != null) {
           if (this.root.no == no) { // 判断待删除节点是否是根节点
               this.root = null;
               return;
           } else {
               this.root.deleteNode(no);
           }
       } else {
           System.out.println("此树为空树!");
        }

    }

    //  前序查找
    public TreeNode preOrderSearch(int no) {
        if (root != null) {
            return this.root.preOrderSearch(no);
        } else {
            return null;
        }
    }

    //  前序查找
    public TreeNode inOrderSearch(int no) {
        if (root != null) {
            return this.root.inOrderSearch(no);
        } else {
            return null;
        }
    }

    //  前序查找
    public TreeNode postOrderSearch(int no) {
        if (root != null) {
            return this.root.postOrderSearch(no);
        } else {
            return null;
        }
    }

    //  前序遍历
    public void preOrderTraverse() {
        if (this.root != null) {
            System.out.print("前序遍历:");
            this.root.preOrderTraverse();
            System.out.println();
        } else {
            System.out.println("此树为空树!");
        }
    }

    //  中序遍历
    public void inOrderTraverse() {
        if (this.root != null) {
            System.out.print("中序遍历:");
            this.root.inOrderTraverse();
            System.out.println();
        } else {
            System.out.println("此树为空树!");
        }
    }

    //  后序遍历
    public void postOrderTraverse() {
        if (this.root != null) {
            System.out.print("后序遍历:");
            this.root.postOrderTraverse();
            System.out.println();
        } else {
            System.out.println("此树为空树!");
        }
    }
}


//  树节点
class TreeNode {
    public int no;
    public String name;
    public TreeNode left;
    public TreeNode right;
    public TreeNode(int no, String name) {
        this.no = no;
        this.name = name;
        this.left = null;
        this.right = null;
    }

    public void  deleteNode(int no) {
        //  因为二叉树是单向的,所以是判断当前节点的子节点是否是需要删除节点,而不是判断当前节点是不是删除节点

        //  如果当前节点的左子节点不为空,并且该子节点就是删除节点,就将this.left = null
        if (this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }

        //  如果当前节点的右子节点不为空,并且该子节点就是删除节点,就将this.right = null
        if (this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }

        //  如果上述都没有删除节点,则向左子树进行递归删除
        if (this.left != null) {
            this.left.deleteNode(no);
        }

        //  若左子树未找到待删除节点,就向右子树进行递归删除
        if (this.right != null) {
            this.right.deleteNode(no);
        }

    }


    //  前序查找
    public TreeNode preOrderSearch(int no) {
        if (this.no == no) {
            return this;
        }
        TreeNode treeNode = null;
        if (this.left != null) {
            treeNode = this.left.preOrderSearch(no);
        }

        if (this.right != null){
            treeNode = this.right.preOrderSearch(no);
        }
        return treeNode;
    }

    //  中序查找
    public TreeNode inOrderSearch(int no) {
        TreeNode treeNode = null;
        if (this.left != null) {
            treeNode = this.left.inOrderSearch(no);
        }
        if (treeNode != null) {
            return treeNode;
        }

        if (this.no == no) {
            return this;
        }

        if (this.right != null){
            treeNode = this.right.inOrderSearch(no);
        }
        return treeNode;
    }

    //  后序查找
    public TreeNode postOrderSearch(int no) {
        TreeNode treeNode = null;
        if (this.left != null) {
            treeNode = this.left.postOrderSearch(no);
        }
        if (treeNode != null) {
            return treeNode;
        }

        if (this.right != null){
            treeNode = this.right.postOrderSearch(no);
        }
        if (this.no == no) {
            return this;
        }
        return treeNode;
    }


    //  前序遍历
    public void preOrderTraverse() {
        //  输出根节点
        System.out.print(this.no + " ");
        //  左子树若不为空,遍历左子树
        if (this.left != null) {
            this.left.preOrderTraverse();
        }
        //  右子树若不为空,遍历右子树
        if (this.right != null) {
            this.right.preOrderTraverse();
        }
    }

    //  中序遍历
    public void inOrderTraverse() {
        //  左子树若不为空,遍历左子树
        if (this.left != null) {
            this.left.inOrderTraverse();
        }
        //  输出根节点
        System.out.print(this.no + " ");
        //  右子树若不为空,遍历右子树
        if (this.right != null) {
            this.right.inOrderTraverse();
        }
    }

    //  后序遍历
    public void postOrderTraverse() {
        //  左子树若不为空,遍历左子树
        if (this.left != null) {
            this.left.postOrderTraverse();
        }
        //  右子树若不为空,遍历右子树
        if (this.right != null) {
            this.right.postOrderTraverse();
        }
        //  输出根节点
        System.out.print(this.no + " ");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来得晚一些也行

观众老爷,请赏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值