卷积神经网络卷积计算,卷积网络计算公式

卷积运算的过程是什么?卷积计算的矩阵是怎么来的,如下图,这个卷积运算示意图怎么理解?

首先,卷积核相同,输入相同,输出的特征是一样的。只不过将输出的矩阵形式换成了列向量的形式。

实质上一般卷积运算与矩阵中的卷积运算并没有差异,唯一的差别仅仅体现在将矩阵元素重排成为了行向量或列向量核矩阵很多时候都是根据经验选取,或者由学习得到。

谷歌人工智能写作项目:小发猫

卷积运算公式是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm深度神经网络图像识别,神经网络识别图像原理。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。

卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。

F(g(x)*f(x))=F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前,重要的是要提到卷积出现的背景。

卷积发生在信号和线性系统的基础上,也不在背景中发生,除了所谓褶皱的数学意义和积分(或求和、离散大小)外,将卷积与此背景分开讨论是没有意义的公式。

信号和线性系统,讨论信号通过线性系统(即输入和输出之间的数学关系以及所谓的通过系统)后发生的变化。

所谓线性系统的含义是,这个所谓的系统,产生的输出信号和输入信号之间的数学关系是一个线性计算关系。

因此,实际上,有必要根据我们需要处理的信号形式来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学形式上就是所谓的卷积关系。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

以下哪些不属于卷积神经网络常用的计算过程

一般都是定了一个固定的核的,例如你29*29的图片,就用5*5的核。这些都是经验。当然你也可以用大些的。

然后核的具体的值,就是要训练出来的,核的初始化的话,若果你的输入是0-1之前,那么核值也可以初始化在0-1之间,不会有太大的误差。

 

### 卷积神经网络卷积层的计算公式卷积神经网络(Convolutional Neural Network, CNN)中,卷积层的核心功能是对输入数据应用一系列滤波器(即权重矩阵),从而提取局部特征。以下是关于卷积层输出尺寸公式的详细介绍。 #### 输出尺寸计算公式 对于一个二维卷积操作,假设输入张量的大小为 \(H \times W\) (高度和宽度),滤波器(kernel)的大小为 \(K_h \times K_w\) ,滑动步长(stride)为 \(S_h \times S_w\) ,填充(padding)为 \(P_h \times P_w\) 。那么,经过卷积运算后的输出特征图尺寸可以由以下公式计算得出: \[ O_h = \left\lfloor \frac{H + 2P_h - K_h}{S_h} \right\rfloor + 1 \] \[ O_w = \left\lfloor \frac{W + 2P_w - K_w}{S_w} \right\rfloor + 1 \] 其中: - \(O_h\) 和 \(O_w\) 表示输出特征图的高度和宽度; - \(P_h\) 和 \(P_w\) 是上下/左右方向上的零填充数量; - 当结果不是整数时,通常采用向下取整的方式[^1]。 #### 参数说明 - **权重 (Weight)** 权重是指用于卷积核中的可训练参数集合。这些参数在整个输入空间上共享,减少了模型复杂度并提高了泛化能力[^2]。 - **滑动步长 (Stride)** 步长定义了卷积核每次移动的距离。较大的步长会减小输出特征图的空间维度,而较小的步长则保留更多细节信息。 - **填充 (Padding)** 填充是在输入边界周围添加额外像素的操作,目的是控制输出特征图的尺寸以及防止边缘信息丢失。常见的填充方式有 `valid`(无填充)和 `same`(保持输入与输出尺寸一致)。如果使用 `same` 填充,则满足条件: \[ P_h = \frac{(S_h - 1) \cdot H + K_h - S_h}{2}, \quad P_w = \frac{(S_w - 1) \cdot W + K_w - S_w}{2} \] #### 示例代码实现 下面是一个简单的 Python 实现来验证上述公式的结果: ```python def calculate_output_size(input_height, input_width, kernel_height, kernel_width, stride_height=1, stride_width=1, padding_height=0, padding_width=0): output_height = ((input_height + 2 * padding_height - kernel_height) // stride_height) + 1 output_width = ((input_width + 2 * padding_width - kernel_width) // stride_width) + 1 return output_height, output_width # 输入参数 input_height = 32 input_width = 32 kernel_height = 5 kernel_width = 5 stride_height = 1 stride_width = 1 padding_height = 2 padding_width = 2 output_height, output_width = calculate_output_size( input_height, input_width, kernel_height, kernel_width, stride_height, stride_width, padding_height, padding_width ) print(f"Output size: {output_height} x {output_width}") ``` 运行此代码将返回给定条件下卷积层的输出尺寸。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值