自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(267)
  • 收藏
  • 关注

原创 ai预测神经网络的方法,ai预测神经网络是什么

总的来说,各个领域都在积极探索AI技术的潜力,并利用人工智能应用于航空领域智能化、保障航空安全、提高运营效率等多个领域之中。虽然目前从技术层到应用端,都存在很多问题和风险,但可以预见,日趋成熟的AI将会为航空事业带来真正意义上的变革。

2022-10-24 10:38:03 1081

原创 神经网络拟合是什么意思,全连接神经网络过拟合

欠拟合是指模型不能在训练集上获得足够低的误差神经网络拟合任务在哪里。而过拟合是指训练误差和测试误差之间的差距太大。相关介绍:人工神经网络(ANN)或联结主义系统是受构成动物大脑的生物神经网络的启发但不完全相同的计算系统。这种系统通过例子来“学习”执行任务,而不用特定于任务的规则进行编程。例如,在图像识别中,人工神经网络可能会通过分析一些图像样本来学习识别包含猫的图像,这些图像被手工标记为“猫”或“不是猫”,并使用结果识别在其他图像中的猫。

2022-10-24 10:36:47 81

原创 python神经网络编程 豆瓣,Python神经网络训练很慢

然后推广到简单的神经网络(激活函数从阶跃“软化”为诸如tanh等类型的函数),然后引入特定类型的网络结构,比如最基本的全连接、前向传播等等概念。建议从单一的感知机Perceptron出发,继而认识到Decision Boundary(判别边界),以及最简单的一些“监督训练”的概念等,有机器学习的基础最好。其次至少需要具备一些适用于研究的编程语言的技能,例如python,matlab,(C++也可行)等,哪怕不自己实现最简单的神经网络而是用API,也是需要一定计算机能力才能应用之。#Dense就是隐藏层。

2022-10-24 10:35:32 71

原创 神经网络入门经典书籍,神经网络基础书籍

类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。

2022-10-24 10:34:12 578

原创 神经网络hopfield算法实例,hopfield和bp神经网络区别

而遗传算法,则非常的不同,是种群搜索的机制,先初始化一堆的解,然后每次按概述让优秀解进入下一代(注意到,有可能有不优秀的也可以进入,而hopfield是每一代能量都会下跌),下一代再通过交叉和变异等机制,产生新的一代。BP网络是误差反向传播网络,属于多层感知器网络,输入和输出节点数根据需要设置,可用于模式识别,分类,预测等,hopfield神经网络Hopfield网络属于无监督学习神经元网络,网络是单层反馈网络,有连续性和离散型之分。(1)对于输入样本中的任意目标矢量xp,p=1,2,…

2022-10-24 10:32:57 2280

原创 神经网络参数量和计算量,神经网络计算公式

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-22 12:55:45 214

原创 神经网络分类数据表格图,神经网络分类数据表格

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-21 13:33:45 87

原创 人工神经网络概念及组成,人工神经网络基本概念

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-21 13:32:35 1481

原创 神经网络的层数怎么定义,神经网络的层数怎么看

逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。最合适的才是最好的。

2022-10-21 13:31:25 110

原创 人工智能神经网络模型,人工智能模拟神经元

人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性人工神经网络模拟大脑。

2022-10-21 13:30:14 827

原创 人工智能神经网络之父,神经网络是谁提出来的

约翰·冯·诺依曼出生于匈牙利的美国籍犹太人数学家,现代电子计算机与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及计算机学、量子力学和经济学中都有重大贡献。冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《计算机与人脑》发布,表现了他生命最后时光的兴趣方向。扩展资料学术成就:1、遍历论遍历论主要涉及动态系统和不变测度。

2022-10-21 13:29:03 752

原创 小波神经网络的基本原理,小波神经网络算法原理

小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。

2022-10-20 19:16:22 66

原创 图像识别用什么神经网络,图像识别用什么神经网

图像处理最常用的是卷积神经网络(CNN),有时也会用到生成式对抗神经网络(GAN)。谷歌人工智能写作项目:小发猫神经网络实现图像识别的过程很复杂图像识别都要用到神经网络么。但是大概过程很容易理解。我也是节选一篇的文章,大概说一下。图像识别技术主要是通过卷积神经网络来实现的。这种神经网络的优势在于,它利用了“同一图像中相邻像素的强关联性和强相似度”这一原理。具体而言就是,在一张图像中的两个相邻像素,比图像中两个分开的像素更具有关联性。但是,在一个常规的神经网络中,每个像素都被连接到了单独的神经元。这样一来,计

2022-10-20 19:15:16 144

原创 卷积神经网络loss不下降,神经网络loss多少算正常

这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。因为合适的batch size范围和训练数据规模、神经网络层数、单元数都没有显著的关系。经网络训练时准确度突然变得急剧下降,很有可能是你的休息不够睡眠不足导致注意力不集中,近段时间的心情也很影响训练时的准确度,心情烦躁准确度也就会下降。2、batch size太大,深度学习的优化training loss降不下去和泛化generalization gap都会出问题。4、选择合适的激活函数、损失函数。

2022-10-20 19:14:10 925

原创 bp神经网络简单流程包括,bp神经网络简单实例

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-20 19:13:05 93

原创 神经网络训练多少次合适,神经网络训练时间多长

在机器学习和相关领域,人工神经网络(人工神经网络)的计算模型灵感来自动物的中枢神经系统(尤其是脑),并且被用于估计或可以依赖于大量的输入和一般的未知近似函数。人工神经网络通常呈现为相互连接的“神经元”,它可以从输入的计算值,并且能够机器学习以及模式识别由于它们的自适应性质的系统。例如,用于手写体识别的神经网络是由一组可能被输入图像的像素激活的输入神经元来限定。其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。

2022-10-20 19:11:54 792

原创 卷积神经网络用来做什么,卷积神经网络垃圾分类

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

2022-10-19 11:31:12 50

原创 神经网络 游戏,神经连接游戏

一般 而言,游戏帧率与系统软件延迟时间成正比,可是这类关联并不是始终对等。实际上在没法合理简易表述游戏回应的前提条件下,根据FPS每秒帧数来表述游戏画面的吞吐率。举例说明。如果我们有着一台能够每秒钟3D渲染1000FPS的PC,可是连接了一个长长长的细细长长步骤,要一秒钟才可以抵达显示屏,这个时候大家合理打中敌人的几率可能十分不高。此刻,就必须增加一项NVIDIA新技术应用,称之为NVIDIA Reflex低延迟技术性。

2022-10-19 11:30:02 3240 1

原创 matlab神经网络训练方法,matlab神经网络模型导出

它不过是个结构体,你在当前变量那个框框里找到它->右击->保存为.mat,下次用的时候点load再加载回来就成了(以上操作亦可用 save load 命令在代码里实现),不行的话直保存net的参数,下回用的时候在拿出来赋给新建的net。能,save 训练好的网络名称,保存好网络,用的时候load 网络名称,再用网络名称.lw查看权值~需要自己用命令保存,这样才会保存在你的工作空间里面,下次开机才能重新使用。将训练结果保存,save *.mat,下次用的时候在load *.mat。“x”换成你的输入矩阵。

2022-10-19 11:28:46 891

原创 一维卷积神经网络应用,二维卷积神经网络原理

看你的目的是什么了,一般传统分类的输出是图片的种类,也就是你说的一维向量,前提是你输入图像是也是一维的label。如果你输入的是一个矩阵的label,也可以通过调整网络的kernel达到输出一个矩阵的labels。

2022-10-19 11:27:35 1225

原创 消除数据冗余的方法有哪些,处理冗余数据的方法

数据冗余指数据之间的重复,也可以说是同一数据存储在不同数据文件中的现象。可以说增加数据的独立性和减少数据冗余为企业范围信息资源管理和大规模信息系统获得成功的前提条件。数据冗余会妨碍数据库中数据的完整性(integrality),也会造成存贮空间的浪费。尽可能地降低数据冗余度,是数据库设计的主要目标之一。关系模式的规范化理沦(以下称NF理论)的主要思想之一就是最小冗余原则,即规范化的关系模式在某种意义上应该冗余度最小。

2022-10-18 18:56:38 2917

原创 神经网络用于控制的优越性,神经网络的稳定性

工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。

2022-10-18 18:55:32 1121

原创 神经网络批量训练原理,训练好的神经网络模型

假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。Gelly是Flink的图API库,而GraphScope是阿里研发的图计算平台,是一个完整的平台,包括图数据管理,执行引擎还支持多种图算法。

2022-10-18 18:54:24 133

原创 神经网络怎么判断过拟合,神经网络过拟合原因

欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。考虑过多,超出自变量的一般含义维度,过多考虑噪声,会造成过拟合。可以认为预测准确率、召回率都比理论上最佳拟合函数低很多,则为欠拟合。简介人工神经网络按其模型结构大体可以分为前馈型网络(也称为多层感知机网络)和反馈型网络(也称为Hopfield网络)两大类,前者在数学上可以看作是一类大规模的非线性映射系统,后者则是一类大规模的非线性动力学系统。按照学习方式,人工神经网络又可分为有监督学习、非监督和半监督学习三类;按工作

2022-10-17 22:59:19 255

原创 人工神经网络算法的应用,神经网络算法应用案例

其实要说种类其实很简单,完全可以按照炒股的类型来对策略模型分类,从这个角度来说,认为可以分成技术分析型、价值分析型、机器学习与人工智能。当然了,还有一大类是多因子模型,但是多因子从广义来说其实概念很广泛,任何的技术指标和财务因子都可以作为多因子模型的因子。①技术分析型主要是结合各种技术指标来对动量效应或反转效应做研判交易;时变夏普率的择时策略、情绪择时-GSIS、RSRS指标择时及大小盘轮动②价值分析则偏重股票标的的基本面分析;查尔斯·布兰德斯价值投资法、迈克尔•普莱斯低估价值选股策略、阿梅特·欧卡莫斯集中

2022-10-15 09:59:01 423

原创 神经网络用什么软件做,神经网络能用来做什么

假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。理论上编程语言都可以,比如VB,C语言,过程也都是建模、量化、运算及结果输出(图、表),但是matlab发展到现在,集成了很多的工具箱,所以用的最为广泛,用其他的就得是要从源码开发入手了,何必舍近求远。一般的编程软件均能实现,但是我们平常用的是matlab,它里面有一个神经网络的工具箱,用起来比较方便,用VB什么的也可以。

2022-10-15 09:57:54 602

原创 卷积神经网络预测彩票,卷积神经网络预测模型

0代表0个map,0个特征,这应该是卷积神经网络的卷积核大小、个数,卷积层数设置过程中的问题。

2022-10-14 20:51:38 156

原创 bp神经网络对数据的要求,bp神经网络参数有哪些

为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。

2022-10-14 20:50:33 542 1

原创 神经网络训练结果不稳定,神经网络训练结果分析

YYY= mapminmax('apply',XXX,PS),则根据例1的标准化映射,将XXX标准化(结果可能不全在先前设置的[YMIN,YMAX]内,这取决于XXX中数据相对于X中数据的最大值与最小值的比较情况)。注意:此时,XXX的行数必须与X的行数(PS中已记录)相等,否则无法进行;[Y,PS] = mapminmax(X,0,1),则将随机数矩阵X按行逐行标准化到区间[0,1]内,并返回标准矩阵Y和结构体PS(至于它的作用,将在后面介绍到),它记录了X的行数、X中各行的最大值与最小值等信息。

2022-10-14 20:49:26 436

原创 神经网络线性控制的特点,神经网络线性控制原理

神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。谷歌人工智能写作项目:小发猫神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术神经网络线性控制。而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。

2022-10-14 20:48:20 30

原创 人工智能神经网络概念股,神经网络芯片概念股

人工智能包含硬件智能、软件智能和其他。硬件智能包括:汉王科技、康力电梯、慈星股份、东方网力、高新兴、紫光股份。软件智能包括:金自天正、科大讯飞。其他类包括:中科曙光、京山轻机。谷歌人工智能写作项目:小发猫1、苏州科达:苏州科达科技股份有限公司是领先的视讯与安防产品及解决方案提供商,致力于以视频会议、视频监控以及丰富的视频应用解决方案帮助各类政府及企业客户解决可视化沟通与管理难题ai神经网络概念股。2012年,公司整体改制为股份有限公司;2016年12月1日,公司在上海证券交易所主板挂牌上市。2、佳都科技:佳

2022-10-14 20:47:15 791

原创 典型的多层神经网络模型,最简单的神经网络模型

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解什么是简单的单层神经网络模型。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1. 巨量并行性。

2022-10-13 16:52:13 481

原创 小波神经网络的基本原理,小波神经网络数据分析

小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。

2022-10-13 16:51:05 238

原创 bp神经网络原理 实现过程,BP神经网络的实现包括

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-10-13 16:49:55 364

原创 人工神经网络的算法原理,深度神经网络算法原理

人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性人工智能深度神经网络的运算原理。

2022-10-13 16:48:43 214

原创 基于卷积的神经网络系统,卷积神经网络可解释性

卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。且在一个通道内,所有神经元的权重系数相同。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

2022-10-12 11:45:11 151

原创 卷积神经网络 图像处理,卷积神经网络常用模型

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

2022-10-12 11:43:57 568

原创 神经网络可以用来预测吗,神经网络预测的优点

从误差分析、曲线收敛速率分析来看,改进的BP人工神经网络模型、双曲线法和指数曲线法较适用于短、中期预测,而 Pearl 曲线模型和灰色 Verhulst 模型则适用于短、中、长期预测,且Pearl曲线模型和灰色Verhulst模型的预测效果也相近,这与这两种预测方法均是基于S形曲线函数发展而来的有关。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

2022-10-12 11:42:43 643

原创 卷积神经网络的基本操作,卷积神经网络如何卷积

如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

2022-10-12 11:41:27 290

原创 卷积神经网络的三个特点,卷积神经网络三大特点

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

2022-10-12 11:40:19 2192

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除