DAY11 贝叶斯优化和网格搜索

超参数调整专题

知识点回顾

  1. 网格搜索
  2. 随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)
  3. 贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)
  4. time库的计时模块,方便后人查看代码运行时长

今日作业:

对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索

import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv(r'data.csv')    #读取数据

# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv(r"data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature] = data[feature].fillna(mode_value)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。

# new机器学习模型建模
# 划分训练集、验证集和测试集,因为需要考2次
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default']  # 标签
# 按照8:1:1划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)  # 划分训练集和临时集,20%作为临时集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)  # 从临时集中划分验证集和测试集,50%作为验证集,50%作为测试集
# X_train, y_train (80%)
# X_val, y_val (10%)
# X_test, y_test (10%)

print("Data shapes:")
print("X_train:", X_train.shape)
print("y_train:", y_train.shape)
print("X_val:", X_val.shape)
print("y_val:", y_val.shape)
print("X_test:", X_test.shape)
print("y_test:", y_test.shape)
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
# 划分训练集和测试集,因为需要考2次
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default']  #  标签
# 按照8:2划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)  # 划分训练集和临时集,20%作为临时集

from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集,因为我们是用测试集来评估模型的
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42) # 创建随机森林分类器,random_state=42用于设置随机种子,保证每次运行结果一致
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 打印训练与预测耗时
print("\n默认随机森林 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, rf_pred)) # 打印分类报告
print("默认随机森林 在测试集上的混淆矩阵:") # 打印混淆矩阵

# 贝叶斯优化所需要安装scikit-optimize这个库
# pip install  scikit-optimize -i https://pypi.tuna.tsinghua.edu.cn/simple
# --- 2. 网格搜索优化随机森林 ---
print("--- 2. 网格搜索优化随机森林 ---")
from sklearn.model_selection import GridSearchCV # 用于进行网格搜索
# 定义参数网格,这里我们只调整n_estimators和max_depth,因为这两个参数对模型性能影响最大
param_grid = {
    'n_estimators': [50, 100, 200], # 树的数量
    'max_depth': [None, 10, 20, 30], # 树的最大深度
    'min_samples_split': [2, 5, 10], # 分裂内部节点所需的最小样本数
   'min_samples_leaf': [1, 2, 4] # 叶节点所需的最小样本数
}
# 创建网格搜索对象,使用5折交叉验证
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), # 随机森林分类器
                           param_grid=param_grid, # 参数网格
                           cv=5, # 5折交叉验证
                           n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
                           scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time() # 记录开始时间
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time() # 记录结束时间
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒") # 打印网格搜索耗时
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的随机森林 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("网格搜索优化后的随机森林 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵

# --- 2. 贝叶斯优化随机森林 ---
print("--- 2. 贝叶斯优化随机森林 ---")
from skopt import BayesSearchCV # 用于进行贝叶斯优化
from skopt.space import Integer # 用于定义整数类型的搜索空间
# 定义要搜索的参数空间,这里我们只调整n_estimators和max_depth,因为这两个参数对模型性能影响最大
search_space = {
    'n_estimators': Integer(50, 200), # 树的数量
   'max_depth': Integer(10, 30), # 树的最大深度
   'min_samples_split': Integer(2, 10), # 分裂内部节点所需的最小样本数
 'min_samples_leaf': Integer(1, 4) # 叶节点所需的最小样本数
}
# 创建贝叶斯优化搜索对象,使用5折交叉验证
bayes_search = BayesSearchCV(
    estimator=RandomForestClassifier(random_state=42), # 随机森林分类器
    search_spaces=search_space, # 参数空间
    n_iter=50, # 搜索迭代次数
    cv=5, # 5折交叉验证
    n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
    scoring='accuracy'
) # 使用准确率作为评分标准
start_time = time.time() # 记录开始时间
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个贝叶斯优化对象里了
end_time = time.time() # 记录结束时间
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒") # 打印贝叶斯优化耗时
print("最佳参数: ", bayes_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵

#LightGBM和KNN 尝试用下贝叶斯优化和网格搜索
# --- 3. LightGBM ---
print("--- 3. LightGBM ---")
import lightgbm as lgb # 导入LightGBM库
# 定义LightGBM模型,设置 verbose=-1 以忽略警告信息
lgb_model = lgb.LGBMClassifier(random_state=42, verbose=-1) # 创建LightGBM分类器,random_state=42用于设置随机种子,保证每次运行结果一致
# 定义参数网格,这里我们只调整n_estimators和max_depth,因为这两个参数对模型性能影响最大
param_grid = {
    'n_estimators': [50, 100, 200], # 树的数量
    'max_depth': [None, 10, 20, 30], # 树的最大深度
    'min_child_samples': [1, 2, 4] # 子样本数
}
# 创建网格搜索对象,使用5折交叉验证
grid_search = GridSearchCV(estimator=lgb_model, # LightGBM分类器
                           param_grid=param_grid, # 参数网格
                           cv=5, # 5折交叉验证
                           n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
                           scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time() # 记录开始时间
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time() # 记录结束时间
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒") # 打印网格搜索耗时
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的LightGBM 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("网格搜索优化后的LightGBM 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵
#贝叶斯优化后的LightGBM
print("--- 3. 贝叶斯优化LightGBM ---")
from skopt import BayesSearchCV # 用于进行贝叶斯优化
from skopt.space import Integer # 用于定义整数类型的搜索空间
# 定义要搜索的参数空间,这里我们只调整n_estimators和max_depth,因为这两个参数对模型性能影响最大
search_space = {
    'n_estimators': Integer(50, 200), # 树的数量
    'max_depth': Integer(10, 30), # 树的最大深度
    'min_child_samples': Integer(1, 4) # 子样本数  

}
# 创建贝叶斯优化搜索对象,使用5折交叉验证
bayes_search = BayesSearchCV(
    estimator=lgb_model, # LightGBM分类器
    search_spaces=search_space, # 参数空间
    n_iter=50, # 搜索迭代次数
    cv=5, # 5折交叉验证
    n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
    scoring='accuracy'

)
start_time = time.time() # 记录开始时间
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个贝叶斯优化对象里了
end_time = time.time() # 记录结束时间
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒") # 打印贝叶斯优化耗时
print("最佳参数: ", bayes_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n贝叶斯优化后的LightGBM 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("贝叶斯优化后的LightGBM 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵

#KNN
print("--- 4. KNN ---")
from sklearn.neighbors import KNeighborsClassifier # 导入KNN分类器
# 定义KNN模型
knn_model = KNeighborsClassifier() # 创建KNN分类器
# 定义参数网格,这里我们只调整n_neighbors和weights,因为这两个参数对模型性能影响最大
param_grid = {
    'n_neighbors': [3, 5, 7, 9], # K值
    'weights': ['uniform', 'distance'] # 权重
}
# 创建网格搜索对象,使用5折交叉验证
grid_search = GridSearchCV(estimator=knn_model, # KNN分类器
                           param_grid=param_grid, # 参数网格
                           cv=5, # 5折交叉验证
                           n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
                           scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time() # 记录开始时间
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time() # 记录结束时间
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒") # 打印网格搜索0耗时
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的KNN 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("网格搜索优化后的KNN 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵

#贝叶斯优化后的KNN
print("--- 4. 贝叶斯优化KNN ---")
from skopt import BayesSearchCV # 用于进行贝叶斯优化
from skopt.space import Integer # 用于定义整数类型的搜索空间
# 定义要搜索的参数空间,这里我们只调整n_neighbors和weights,因为这两个参数对模型性能影响最大
search_space = {
    'n_neighbors': Integer(3, 9), # K值
    'weights': ['uniform', 'distance'] # 权重

}
# 创建贝叶斯优化搜索对象,使用5折交叉验证
bayes_search = BayesSearchCV(
    estimator=knn_model, # KNN分类器
    search_spaces=search_space, # 参数空间
    n_iter=50, # 搜索迭代次数
    cv=5, # 5折交叉验证
    n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
    scoring='accuracy'  
)

start_time = time.time() # 记录开始时间
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个贝叶斯优化对象里了
end_time = time.time() # 记录结束时间
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒") # 打印贝叶斯优化耗时
print("最佳参数: ", bayes_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n贝叶斯优化后的KNN 在测试集上的分类报告:") # 打印分类报告
print(classification_report(y_test, best_pred)) # 打印分类报告
print("贝叶斯优化后的KNN 在测试集上的混淆矩阵:") # 打印混淆矩阵
print(confusion_matrix(y_test, best_pred)) # 打印混淆矩阵

输出相关网格和贝叶斯优化

--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 1.2259

默认随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.96      0.85       521
           1       0.78      0.31      0.45       229

    accuracy                           0.76       750
   macro avg       0.77      0.64      0.65       750
weighted avg       0.77      0.76      0.73       750

默认随机森林 在测试集上的混淆矩阵:
--- 2. 网格搜索优化随机森林 ---
网格搜索耗时: 93.3410
最佳参数:  {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}

网格搜索优化后的随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.75      0.97      0.85       521
           1       0.79      0.28      0.42       229

    accuracy                           0.76       750
   macro avg       0.77      0.63      0.63       750
weighted avg       0.77      0.76      0.72       750

网格搜索优化后的随机森林 在测试集上的混淆矩阵:
[[504  17]
 [164  65]]
--- 2. 贝叶斯优化随机森林 ---
贝叶斯优化耗时: 103.2901
最佳参数:  OrderedDict([('max_depth', 24), ('min_samples_leaf', 4), ('min_samples_split', 3), ('n_estimators', 51)])

贝叶斯优化后的随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.75      0.97      0.85       521
           1       0.79      0.28      0.41       229

    accuracy                           0.76       750
   macro avg       0.77      0.62      0.63       750
weighted avg       0.76      0.76      0.71       750

贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[504  17]
 [166  63]]
--- 3. LightGBM ---
网格搜索耗时: 24.6369
最佳参数:  {'max_depth': None, 'min_child_samples': 1, 'n_estimators': 50}

网格搜索优化后的LightGBM 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.96      0.85       521
           1       0.78      0.29      0.43       229

    accuracy                           0.76       750
   macro avg       0.77      0.63      0.64       750
weighted avg       0.76      0.76      0.72       750

网格搜索优化后的LightGBM 在测试集上的混淆矩阵:
[[502  19]
 [162  67]]
--- 3. 贝叶斯优化LightGBM ---
贝叶斯优化耗时: 55.7114
最佳参数:  OrderedDict([('max_depth', 10), ('min_child_samples', 3), ('n_estimators', 50)])

贝叶斯优化后的LightGBM 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.96      0.85       521
           1       0.76      0.31      0.44       229

    accuracy                           0.76       750
   macro avg       0.76      0.63      0.64       750
weighted avg       0.76      0.76      0.72       750

贝叶斯优化后的LightGBM 在测试集上的混淆矩阵:
[[499  22]
 [158  71]]
--- 4. KNN ---
网格搜索耗时: 0.7994
最佳参数:  {'n_neighbors': 9, 'weights': 'uniform'}

网格搜索优化后的KNN 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.71      0.89      0.79       521
           1       0.39      0.16      0.23       229

    accuracy                           0.67       750
   macro avg       0.55      0.53      0.51       750
weighted avg       0.61      0.67      0.62       750

网格搜索优化后的KNN 在测试集上的混淆矩阵:
[[463  58]
 [192  37]]
--- 4. 贝叶斯优化KNN ---
贝叶斯优化耗时: 31.7997
最佳参数:  OrderedDict([('n_neighbors', 8), ('weights', 'uniform')])

贝叶斯优化后的KNN 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.70      0.94      0.80       521
           1       0.41      0.09      0.15       229

    accuracy                           0.68       750
   macro avg       0.56      0.52      0.48       750
weighted avg       0.61      0.68      0.60       750

贝叶斯优化后的KNN 在测试集上的混淆矩阵:
[[491  30]
 [208  21]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值