UVA 10870 Recurrences(矩阵快速幂)

题目链接:https://vjudge.net/problem/UVA-10870

题意:给出一个线性递推,求f(n) mod m

解题方案:线性递推,可以用矩阵相乘描述,矩阵快速幂。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>

using namespace std;

#define FOR(i,k,n) for(int i=k;i<n;i++)
#define FORR(i,k,n) for(int i=k;i<=n;i++)
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define mst(a,n)  memset(a,n,sizeof(a))
#define ll long long
#define N 20
#define mod 1000000007
#define INF 0x3f3f3f3f

const double eps=1e-8;
const double pi=acos(-1.0);

int d, n, m;
ll S[N];

typedef struct Mat{
	ll mat[N][N];
}Mat;

Mat A,res;

Mat operator * (Mat a, Mat b)
{
	Mat c;
	mst(c.mat, 0);
	
	for(int i = 0; i < d; i++){
		for(int k = 0; k < d; k++){
			if(a.mat[i][k]==0) continue;
			for(int j = 0; j < d; j++){
				c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j] % m) % m;
			}
		}
	}	
	return c;
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
	
	while(~scanf("%d%d%d",&d, &n, &m)){
		if(!d && !n && !m) break;
		mst(A.mat, 0);
		FOR(i, 0, d-1){
			A.mat[i][i+1] = 1;
		}
		
		for(int i = d-1; i >= 0; i --){
			scanf("%lld", &A.mat[d-1][i]);
		}
		FOR(i, 0, d){
			scanf("%lld", &S[i]);
		}
		mst(res.mat, 0);
		FOR(i, 0, d) res.mat[i][i] = 1;
		
		if(n <= d){
			printf("%lld\n",S[n-1]);
			continue;
		}
		
		n -= d;
		while(n){
			if(n & 1) res = res * A;
			n >>= 1;
			A = A * A;
		}
		
		ll ans = 0;
		FOR(i, 0, d){
			ans = (ans + res.mat[d-1][i] * S[i] % m) % m;
		}
		printf("%lld\n", ans);
	}
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值