矩阵论
文章平均质量分 97
wblong_cs
GIS,CAD ,3D ,BIM
展开
-
人工智能和机器学习之线性代数(三)
本文将构建一个图像搜索引擎,将介绍基本原理和构建过程所用到的工具和技术。原创 2024-10-24 20:32:33 · 1232 阅读 · 0 评论 -
人工智能和机器学习之线性代数(二)
本文将通过介绍向量的点积(dot Product)、Embedding及其在相似性搜索中的应用来建立这些基础知识。原创 2024-10-17 21:29:15 · 1331 阅读 · 0 评论 -
人工智能和机器学习之线性代数(一)
介绍向量和矩阵的基础知识以及开源的机器学习框架PyTorch。原创 2024-10-13 21:17:14 · 1868 阅读 · 0 评论 -
矩阵论与线性代数
1)线性代数主要以运算为主,比如矩阵的四则运算、行列式的计算、特征值和特征向量的计算等。而矩阵论主要以变换为主,它利用线性代数知识,描述线性变换,并提出了特殊变换,如正规变换、酉变换等。(2)线性代数处理特殊矩阵,例如它只对可对角化矩阵进行特征值分解。而矩阵论在此基础上解决了不可对角化的矩阵的分解(方阵的Jordan分解),还解决了非方阵的分解,奇异值分解。(3)矩阵论作为线性代数的后续课程,涉及转载 2014-10-26 09:52:44 · 15141 阅读 · 1 评论 -
详解方差协方差矩阵
协方差的定义 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4转载 2014-10-30 19:24:30 · 2477 阅读 · 0 评论