基础属性 :
// 初始化桶的大小, 底层实现是数组, 所以这里是数组默认的大小
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 桶最大值
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 用于判断是否需要将链表转换为红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;
// 也是阈值, 当桶上的链表数大于这个值的时候, 数转链表
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
// table 是真正存放数据的数组
transient Node<K,V>[] table;
transient Set<Map.Entry<K,V>> entrySet;
// Map 中存放数量的大小
transient int size;
// 临界值, 到达这个值的时候就得扩容
int threshold;
// 负载因子, 可以在初始化时显示指定
final float loadFactor;
存放数组的 table 的元素类型 : 这里就是链表的结点, 多了一个 hash 值
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
put 方法 :
// 这里实际调用的是下面的 putVal 方法, 所以重点讲下面的方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 判断当前 tab 是否为空, 空的话就说明 map 中还没有存放 value
if ((tab = table) == null || (n = tab.length) == 0)
// 调用 resize() 扩容, 这里是初始化
n = (tab = resize()).length;
// 计算当前 key 的哈希值, 定位到具体的桶中判断是否为空, 为空则没有 hash 冲突,
// 那么就直接插入到这个位置, 这里的计算 i = (n - 1) & hash 后面做讲解
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 如果这里存在元素, 那么就出现了 hash 碰撞, 后面就有三种情况进行处理 :
// 1. key 相同的话, 直接用新的 value 替换掉存在的 value
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 2. key 不同的话, 用红黑树存储
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 3. key 不同的话, 用链表进行存储, 尾插法存储
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 超过了阈值, 链表转红黑树
treeifyBin(tab, hash);
break;
}
// 如果遍历的过程中找到了相同的 key, 那么直接覆盖, 前面是将给定的Node值赋值给 e, 这里进行覆盖操作
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 超过最大容量, 就扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
这里 p = tab[i = (n - 1) & hash] 的计算, 因为数组的长度一定是 2 的幂, 所以这个位运算的结果一定不会比数组长度大, 所以不会出现越界的可能. 而且 n - 1 是个奇数, 那么与 hash 值进行 & 运算的话, 元素分布也均匀.
get 方法 :
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 首先定位到 key hash 之后所在的桶的位置
// 如果桶是空的就不进入这个 if 循环, 直接返回 null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 首先对桶中第一个位置的 key 是否是查询的 key, 如果是的还就直接返回 value
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 如果第一个不匹配, 则判断它的下一个是红黑树还是链表
if ((e = first.next) != null) {
// 是红黑树的话就按照树的方式返回值
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 否则就按照链表的方式遍历
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
上面的 (get/put) 方法相对于 jdk 1.7 对链表进行了优化, 查询效率从 O(n) 提高到 O(logn)
resize() 扩容方法 :
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
// 扩容前的旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧阈值
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 如果超过了最大值就不再扩充了, 只能去发生碰撞了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值, 就扩充为原来的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// 如果旧容量不大于 0
// 如果旧阈值大于 0, 就将其设为新的容量
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 否则就都设为默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的 resize 上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 将每个桶中的元素都移动到新桶中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
//将旧的链表/红黑树的头结点取得, 然后释放掉旧数组的对象引用
oldTab[j] = null;
// 如果只有一个元素, 放到对应的桶中
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 这里的计算很巧妙
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
上面的计算中 : e.hash & oldCap == 0, 假设 oldCap = 16. 之前我们计算 i 通过 hash & (oldCap - 1); 而在扩容的时候用
e.hash & oldCap (16 :10000) 这个值与 0 进行比较, 如果等于 0 的话, 那么 hash 的二进制形式的倒数第五位的值为 0,
那么 newCap = 32 新的 i = hash & 31(11111) 会等于 hash & 15(01111), 即在数组中的位置没变,
不是 0 的话, i 等于之前的位置 + oldCap. 这里的 loTail 和 hiTail 相差的大小就是一个 oldCap. 在最后, loTail 就放到了新数组中的原位置, 而 hiTail 就放到了原位置 + oldCap 的地方.
HashMap 的遍历
推荐使用 EntrySet 进行遍历 : Iterator<Map.Entry<String, Integer>> entryIterator = map.entrySet().iterator();
可以将 key 和 value 同时取出