地址:
力扣https://leetcode-cn.com/problems/minimize-maximum-pair-sum-in-array/
题目:
一个数对 (a,b) 的 数对和 等于 a + b 。最大数对和 是一个数对数组中最大的 数对和 。
比方说,如果我们有数对 (1,5) ,(2,3) 和 (4,4),最大数对和 为 max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8 。
给你一个长度为 偶数 n 的数组 nums ,请你将 nums 中的元素分成 n / 2 个数对,使得:
nums 中每个元素 恰好 在 一个 数对中,且
最大数对和 的值 最小 。
请你在最优数对划分的方案下,返回最小的 最大数对和 。
示例 1:
输入:nums = [3,5,2,3] 输出:7 解释:数组中的元素可以分为数对 (3,3) 和 (5,2) 。 最大数对和为 max(3+3, 5+2) = max(6, 7) = 7 。 |
示例 2:
输入:nums = [3,5,4,2,4,6] 输出:8 解释:数组中的元素可以分为数对 (3,5),(4,4) 和 (6,2) 。 最大数对和为 max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8 。 |
提示:
n == nums.length 2 <= n <= 105 n 是 偶数 。 1 <= nums[i] <= 105 |
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimize-maximum-pair-sum-in-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
这道题题意相当的晦涩,害我第一次求解就理解错误
来分析下题目意思,按照示例说明就容易明白要怎样求解
示例:
nums = [3,5,2,3]
题目要求的:
1. 每一个元素都要使用
2. 最大数对和:是在组合完成的情况下看每个数对哪个最大
3. 最小的 最大数对和:这个比较难理解,示例 的两种组合方式
[3,3] [5,2] 和 [3,2] [5,3] 两种方式,分别对应的最大数对和是 7, 8
那么结果就是选 7
可以看出最大值+最小值 这样的组合方式得到的数对一定是 最小的“最大数对和”
在有多组数对的情况下,这样的组合里面找到最大的那一组即是答案
这样看起来还是有点烧头,可以看看下一组示例(我先将其排序):
nums = [1,1,1,2,4,4,5,5,5,5]
如果不用最大值+最小值,那么 5+5 = 10,一定会有 小于 10 的那个数对,为了达到降低到最小
1+5 = 6 满足了最小,最大的话还要继续 最大值+最小值 比较,最后 4+4 = 8
方法一、排序
#define max(a,b) ( (a) > (b) ? (a) : (b) )
int cmp(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int minPairSum(int* nums, int numsSize){
qsort(nums, numsSize, sizeof(int), cmp);
int maxNum = 0;
for(int i=0; i<numsSize/2; i++)
{
maxNum = max(maxNum, nums[i] + nums[numsSize - 1 -i]);
}
return maxNum;
}