1605. 给定行和列的和求可行矩阵

地址:

力扣icon-default.png?t=M0H8https://leetcode-cn.com/problems/find-valid-matrix-given-row-and-column-sums/

题目:

给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。

请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。

请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。

示例 1:

输入:rowSum = [3,8], colSum = [4,7]
输出:[[3,0],
      [1,7]]
解释:
第 0 行:3 + 0 = 3 == rowSum[0]
第 1 行:1 + 7 = 8 == rowSum[1]
第 0 列:3 + 1 = 4 == colSum[0]
第 1 列:0 + 7 = 7 == colSum[1]
行和列的和都满足题目要求,且所有矩阵元素都是非负的。
另一个可行的矩阵为:[[1,2],
                  [3,5]]


示例 2:

输入:rowSum = [5,7,10], colSum = [8,6,8]
输出:[[0,5,0],
      [6,1,0],
      [2,0,8]]


示例 3:

输入:rowSum = [14,9], colSum = [6,9,8]
输出:[[0,9,5],
      [6,0,3]]


示例 4:

输入:rowSum = [1,0], colSum = [1]
输出:[[1],
      [0]]


示例 5:

输入:rowSum = [0], colSum = [0]
输出:[[0]]

提示:

1 <= rowSum.length, colSum.length <= 500
0 <= rowSum[i], colSum[i] <= 108
sum(rows) == sum(columns)

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-valid-matrix-given-row-and-column-sums
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:

逆向推到,元素取行列最小值,最大值的话就会爆掉

当元素确定后,行总和 与 列总和 数值就会相应变化

剩下的元素重复这样的过程

方法一、倒推

#define min(a,b) ( (a) < (b) ? (a) : (b) )

int **myMalloc(int r, int c, int *return_r, int **return_c)
{
	int **ret = (int **)malloc(sizeof(int *) * r);
	*return_r = r;
	
	*return_c =(int *)malloc(sizeof(int) * r); 
	for(int i=0; i<r; i++)
	{
		ret[i] = (int *)malloc(sizeof(int) * c);
		(*return_c)[i] = c;
	}

    return ret;
}

/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *returnColumnSizes array.
 * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
 */
int** restoreMatrix(int* rowSum, int rowSumSize, int* colSum, int colSumSize, int* returnSize, int** returnColumnSizes){
    int row = rowSumSize;
    int col = colSumSize;
    int i, j;

    int **grid = myMalloc(row, col, returnSize, returnColumnSizes);

    for(i=0; i<row; i++)
    {
        for(j=0; j<col; j++)
        {
            grid[i][j] = min(rowSum[i], colSum[j]);
            rowSum[i] -= grid[i][j];
            colSum[j] -= grid[i][j];
        }
    }

    
 

    return grid;
}

查看更多刷题笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值