地址:
力扣https://leetcode-cn.com/problems/find-valid-matrix-given-row-and-column-sums/
题目:
给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。
请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。
请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。
示例 1:
输入:rowSum = [3,8], colSum = [4,7] 输出:[[3,0], [1,7]] 解释: 第 0 行:3 + 0 = 3 == rowSum[0] 第 1 行:1 + 7 = 8 == rowSum[1] 第 0 列:3 + 1 = 4 == colSum[0] 第 1 列:0 + 7 = 7 == colSum[1] 行和列的和都满足题目要求,且所有矩阵元素都是非负的。 另一个可行的矩阵为:[[1,2], [3,5]] |
示例 2:
输入:rowSum = [5,7,10], colSum = [8,6,8] 输出:[[0,5,0], [6,1,0], [2,0,8]] |
示例 3:
输入:rowSum = [14,9], colSum = [6,9,8] 输出:[[0,9,5], [6,0,3]] |
示例 4:
输入:rowSum = [1,0], colSum = [1] 输出:[[1], [0]] |
示例 5:
输入:rowSum = [0], colSum = [0] 输出:[[0]] |
提示:
1 <= rowSum.length, colSum.length <= 500 0 <= rowSum[i], colSum[i] <= 108 sum(rows) == sum(columns) |
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-valid-matrix-given-row-and-column-sums
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
逆向推到,元素取行列最小值,最大值的话就会爆掉
当元素确定后,行总和 与 列总和 数值就会相应变化
剩下的元素重复这样的过程
方法一、倒推
#define min(a,b) ( (a) < (b) ? (a) : (b) )
int **myMalloc(int r, int c, int *return_r, int **return_c)
{
int **ret = (int **)malloc(sizeof(int *) * r);
*return_r = r;
*return_c =(int *)malloc(sizeof(int) * r);
for(int i=0; i<r; i++)
{
ret[i] = (int *)malloc(sizeof(int) * c);
(*return_c)[i] = c;
}
return ret;
}
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
int** restoreMatrix(int* rowSum, int rowSumSize, int* colSum, int colSumSize, int* returnSize, int** returnColumnSizes){
int row = rowSumSize;
int col = colSumSize;
int i, j;
int **grid = myMalloc(row, col, returnSize, returnColumnSizes);
for(i=0; i<row; i++)
{
for(j=0; j<col; j++)
{
grid[i][j] = min(rowSum[i], colSum[j]);
rowSum[i] -= grid[i][j];
colSum[j] -= grid[i][j];
}
}
return grid;
}