1557. 可以到达所有点的最少点数目

地址:

力扣icon-default.png?t=M1L8https://leetcode-cn.com/problems/minimum-number-of-vertices-to-reach-all-nodes/

题目:

给你一个 有向无环图 , n 个节点编号为 0 到 n-1 ,以及一个边数组 edges ,其中 edges[i] = [fromi, toi] 表示一条从点  fromi 到点 toi 的有向边。

找到最小的点集使得从这些点出发能到达图中所有点。题目保证解存在且唯一。

你可以以任意顺序返回这些节点编号。

示例 1:

输入:n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]
输出:[0,3]
解释:从单个节点出发无法到达所有节点。从 0 出发我们可以到达 [0,1,2,5] 。从 3 出发我们可以到达 [3,4,2,5] 。所以我们输出 [0,3] 。


示例 2:

输入:n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]
输出:[0,2,3]
解释:注意到节点 0,3 和 2 无法从其他节点到达,所以我们必须将它们包含在结果点集中,这些点都能到达节点 1 和 4 。
 

提示:

2 <= n <= 10^5
1 <= edges.length <= min(10^5, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi < n
所有点对 (fromi, toi) 互不相同。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-vertices-to-reach-all-nodes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:

这道题与 547. 省份数量 有点像,用 BFS 从一个节点出发直到最末

但是,却又不同,因为 点与点之间的关系并没有全部体现,所以

如果从一个节点出发,并不能形成一条完整的链,只能形成从该节点出发的一条链,很有可能还有其他节点指向他。

另外还有限定,要最小的点集

最小的点集:从点 A 出发能够遍历到足够多的的点。那么像这样的点组成的集合一定能够用最少的点覆盖全部点

这样考虑的话,这样的点一定不是中途经过的点,也不是最末的点,一定是一个出发点

即没有任何其他点指向他

那么,这道题一下就简单了,我们统计二维数组 [i][1] 元素的个数

如果 个数 = 0,那么这就是代表出发点

方法一、找到出发点

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
typedef struct {
    int origIdx;
    int cnt;
}NODE;

int* findSmallestSetOfVertices(int n, int** edges, int edgesSize, int* edgesColSize, int* returnSize){
    int i,j;
    int retlen = 0;

    // restored start point
    NODE *startArr = (NODE *)malloc(sizeof(NODE) * n);
    for(i=0; i<n; i++)
    {
		startArr[i].origIdx = i;
        startArr[i].cnt = 0;
    }

    for(i=0; i<edgesSize; i++)
    {
        int end = edges[i][1];
        startArr[end].origIdx = end;
        (startArr[end].cnt)++;
    }
    for(i=0; i<n; i++)
    {
        //printf("n=%d,i=%d, startArr[%d].cnt=%d\n", n, i, i, startArr[i].cnt);
        if( startArr[i].cnt == 0)
            retlen++;
    }

    int *retArr = (int *)malloc(sizeof(int) * retlen);
    for(i=0,j=0; i<n; i++)
    {
        if(startArr[i].cnt == 0)
        {
            //printf("idx=%d\n", startArr[i].origIdx);
            retArr[j++] = startArr[i].origIdx;
        }
    }

    *returnSize = retlen;
    free(startArr);
    return retArr;
}

查看更多刷题笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值