地址:
力扣https://leetcode-cn.com/problems/minimum-number-of-vertices-to-reach-all-nodes/
题目:
给你一个 有向无环图 , n 个节点编号为 0 到 n-1 ,以及一个边数组 edges ,其中 edges[i] = [fromi, toi] 表示一条从点 fromi 到点 toi 的有向边。
找到最小的点集使得从这些点出发能到达图中所有点。题目保证解存在且唯一。
你可以以任意顺序返回这些节点编号。
示例 1:
输入:n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]
输出:[0,3]
解释:从单个节点出发无法到达所有节点。从 0 出发我们可以到达 [0,1,2,5] 。从 3 出发我们可以到达 [3,4,2,5] 。所以我们输出 [0,3] 。
示例 2:
输入:n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]
输出:[0,2,3]
解释:注意到节点 0,3 和 2 无法从其他节点到达,所以我们必须将它们包含在结果点集中,这些点都能到达节点 1 和 4 。
提示:
2 <= n <= 10^5
1 <= edges.length <= min(10^5, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi < n
所有点对 (fromi, toi) 互不相同。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-vertices-to-reach-all-nodes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
这道题与 547. 省份数量 有点像,用 BFS 从一个节点出发直到最末
但是,却又不同,因为 点与点之间的关系并没有全部体现,所以
如果从一个节点出发,并不能形成一条完整的链,只能形成从该节点出发的一条链,很有可能还有其他节点指向他。
另外还有限定,要最小的点集
最小的点集:从点 A 出发能够遍历到足够多的的点。那么像这样的点组成的集合一定能够用最少的点覆盖全部点
这样考虑的话,这样的点一定不是中途经过的点,也不是最末的点,一定是一个出发点
即没有任何其他点指向他
那么,这道题一下就简单了,我们统计二维数组 [i][1] 元素的个数
如果 个数 = 0,那么这就是代表出发点
方法一、找到出发点
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
typedef struct {
int origIdx;
int cnt;
}NODE;
int* findSmallestSetOfVertices(int n, int** edges, int edgesSize, int* edgesColSize, int* returnSize){
int i,j;
int retlen = 0;
// restored start point
NODE *startArr = (NODE *)malloc(sizeof(NODE) * n);
for(i=0; i<n; i++)
{
startArr[i].origIdx = i;
startArr[i].cnt = 0;
}
for(i=0; i<edgesSize; i++)
{
int end = edges[i][1];
startArr[end].origIdx = end;
(startArr[end].cnt)++;
}
for(i=0; i<n; i++)
{
//printf("n=%d,i=%d, startArr[%d].cnt=%d\n", n, i, i, startArr[i].cnt);
if( startArr[i].cnt == 0)
retlen++;
}
int *retArr = (int *)malloc(sizeof(int) * retlen);
for(i=0,j=0; i<n; i++)
{
if(startArr[i].cnt == 0)
{
//printf("idx=%d\n", startArr[i].origIdx);
retArr[j++] = startArr[i].origIdx;
}
}
*returnSize = retlen;
free(startArr);
return retArr;
}