1591 [ZJOI2010] 数字计数(Bzoj1833 LOJ10169 LUOGU2602 提高+/省选-) 暴力30分 需要区分前导0的数位DP 转移方程决定了dp数组

总目录

在线测评地址(ybt)

在线测评地址(LOJ)

在线测评地址(LUOGU)

1.暴力30分

ybt

未通过

测试点结果内存时间
测试点1答案正确612KB2MS
测试点2答案正确620KB8MS
测试点3答案正确620KB7MS
测试点4运行超时576KB997MS
测试点5运行超时580KB998MS
测试点6运行超时584KB1002MS
测试点7运行超时584KB998MS
测试点8运行超时580KB997MS
测试点9运行超时584KB998MS
测试点10运行超时588KB998MS

LOJ

LUOGU

暴力30分代码如下:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL cnt[12];
int main(){
	LL lt,rt,i,x;
	int j;
	scanf("%lld%lld",&lt,&rt);
	for(i=lt;i<=rt;i++){
		x=i;
		while(x){
			cnt[x%10]++;
			x/=10;
		}
	}
	for(j=0;j<=9;j++)printf("%lld ",cnt[j]);
	return 0;
}

2.数位DP

考虑001,100对于统计0的数量时,影响是不同的,该题需要考虑前导0.

该题应有[10]这一维数组,用于区分0-9.

设状态dp[pos][cnt]表示已经考虑到了前 pos位,目前的某个数码 cur的个数为 cnt 。

我们可以转移:f[pos][cnt]=∑f[pos−1][cnt−(now==cur)],其中 now表示考虑的第pos位上的数码。

为什么选pos,cnt,该dp中的两个维度含义,是由转移方程决定。

ybt

通过

测试点结果内存时间
测试点1答案正确620KB1MS
测试点2答案正确604KB2MS
测试点3答案正确608KB2MS
测试点4答案正确608KB2MS
测试点5答案正确612KB2MS
测试点6答案正确612KB2MS
测试点7答案正确608KB2MS
测试点8答案正确604KB2MS
测试点9答案正确616KB2MS
测试点10答案正确616KB2MS

LOJ


LUOGU

 

 数位DP代码如下:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL dp[15][15];
int cur;//当前处理的数字 
int bit[15];
LL dfs(int pos,int cnt,bool lead,bool limit){
	LL ans=0;
	int up,i;
	if(pos==-1)return cnt;
	if(!limit&&!lead&&dp[pos][cnt]!=-1)return dp[pos][cnt];
	up=limit?bit[pos]:9;
	for(i=0;i<=up;i++){
		if(cur==0){//cur是0 
			ans+=dfs(pos-1,cnt+(i==0&&!lead),i==0&&lead,i==up&&limit);//cnt+(i==0&&!lead)只统计非前导0的情况 
		}else{//cur是1-9 
			ans+=dfs(pos-1,cnt+(i==cur),i==0&&lead,i==up&&limit);
		}
	}
	if(!limit&&!lead)dp[pos][cnt]=ans;
	return ans;
}
LL solve(LL x){
	int pos=0;
	while(x){
		bit[pos++]=x%10;
		x/=10;
	}
	return dfs(pos-1,0,1,1);
}
int main(){
	LL lt,rt;
	scanf("%lld%lld",&lt,&rt);
	for(cur=0;cur<=9;cur++){
		memset(dp,-1,sizeof(dp));
		printf("%lld ",solve(rt)-solve(lt-1));
	}
} 

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值