首先斐波拉契数列指的是这样一个数列"0,1,1,2,3,5,8,13......."从第三项开始,每一项都等于前两项之和。
比较常见的一种实现方式是递归:
对它的时间复杂度分析如下图:
例如当n为5时,n=5 等于n=4 加上n=3 ,而n=4又是由n=3加上n=2 ,这个n=3就计算了两遍 ,看上图当需要得到n时 要计算的是 每一层分别是 1 2 4 8 16...... 也就是每加入一项时间复杂度加2的n次方,这就是递归实现Fibonacci,可以清楚的看到它的时间复杂度高的原因是因为n-2这项的重复计算。
为了减少时间复杂度,我们引出下面的用循环实现Fibonacci:
时间复杂度分析图如下:
首先我们根据Fibonacci数列的性质,把前两位b=0,a=1,a为后面那位较大的。ret是n前两数之和,也就是所求的第n项。据上图,要求第n项需要循环n-1次每一次循环都是b,a两数相加求和ret,然后当前大的这项a称为下一次循环小的那项b,当前ab两项之和ret为下次循环大的那项b,这样就弥补了上面递归方法的不足,保留了第n-2项的值。时间复杂度仅为n。
下面再补充一种用生成器yield实现斐波拉契,主要是能节省内存空间:
def fab(num):
n, a, b = 0, 0, 1
while n < num:
yield b
a, b = b, a + b
n = n + 1
for i in fab(5):
print(i)