斐波那契(Fibonacci)数列的几种求法及复杂度分析

本文介绍了斐波那契数列的几种常见计算方法,包括非递归的动态规划和递归优化。详细分析了它们的时间复杂度和空间复杂度,指出非递归方法中的循环实现效率最高,而未经优化的递归方法可能导致指数级的时间复杂度。同时,提出了分治法作为更优的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci

(斐波那契) 数列的几种求法及复杂度分析

斐波那契数列是一个有规律的神奇数列,1,1,2,3,5,8,13,21……

规律就是从第三项开始,每一项的结果为相邻相邻前两项的和,即 Fn = Fn-1 + Fn-2 ,知道这个规律后,相信大家已经有办法得到第n项的值

下面介绍几种方法供大家参考

非递归方法

int Fib1(int n) {
	int a = 1;
	int b = 1;
	if (n <= 2) {
		cout<<"第"<<n<<"项为:"<<a<<endl;
	}
	else{
		for(int i = 3; i <= n; i++) {
			int tmp = b;
			b = a + b;
			a = tmp;
		}
		return b;
	}
} 

此种方法比较简单,一个循环就能解决,时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)

int Fib2(int n) {
	int F[n+1];  //F[0]不用 
	F[1] = 1;
	F[2] = 1;
	for (int i = 3; i <= n; i++) {
		F[i] = F[i-1] + F[i - 2];
	} 
	return F[n];
}

此方法需要开辟一个数组,所以时间复杂度为 O ( n ) O(n) O(n),空间复杂度也为 O ( n ) O(n) O(n),优点是从第1项到第n项的数据都可以保存

递归方式

int Fib3(int n) {
	if (n == 1 || n == 2)
		return 1;
	else
		return Fib3(n - 1) + Fib3(n - 2);
}

函数体超级简单,但此方法时间复杂度为O(2n),空间复杂度 O ( n ) O(n) O(n),这个时间复杂度是非常高的,不建议使用

读者可用递归树的形式证明其时间复杂度

②递归优化

int Fib4(int a, int b, int n) {
	if (n <= 2) 
   		return 1;
	else if (n == 3)  
		return a + b;
	else
		return Fib4(b, a + b, n - 1);
}

这里相当于用a和b来记录当前相加的两个数值,此时就不用两次递归了。每次递归的时候n减1,即只是递归了n次,所以时间复杂度是 O ( n ) O(n) O(n),空间复杂度也为 O ( n ) O(n) O(n)

时间复杂度更小的算法 ——分治法求斐波那契数列

分治法求斐波那契数列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值