写在前面:
本博客基于学校提供的教材书《数据结构——Java语言描述(第2版)》编写。原意是用于学校期末考的复习整理,也希望能对大家有所帮助!
此次整理是针对学校给出的考点,而不是针对数据结构整个课程的知识点整理。
博客中的页码为教材相关内容的对应页码。图片为原书的照片,代码基本为书上的原版代码,仅供参考。
一、填空题
度数与边数的关系
无向图和有向图
判空判满
连通图的点与边的关系
等等
二、程序填空
2.1 顺序表插入运算
public void insert(int i, Object x) throws Exception {
if (curLen == listElem.length) {
// 顺序表已满
throw new Eception("顺序表已满");
}
if (i < 0 || i > curLen) {
throw new Exception("插入位置不合法");
}
for (int j = curLen; j>i; j--) {
// 元素后移
listElem[j] = listElem[j - 1];
}
// 插入
listElem[i] = x;
curLen++;
}
2.2 统计二叉树中结点个数
public int countNode(BiTreeNode tree) {
int count = 0;
if (tree != null) {
LinkQuene quene = new LinkQuene();
// 根结点入队
quene.offer(tree);
while (!L.isEmpty()) {
tree = (BiTreeNode) quene.poll();
count++;
if (T.lchild != null) {
quene.offer(tree.lchild);
}
if (T.rchild != null) {
quene.offer(tree.rchild);
}
}
}
return count;
}
2.3 顺序查找
public int seqSearch(Comparable key) {
int i = 0, n = length();
while (i<n && r[i].key.compareTo(key)!=0) {
i++;
}
// 如果找到了那么会在i<n停下
if (i < n) {
return i;
} else { // 如果一直找不到,那么最后会i>=n而退出循环
return -1;
}
}
2.4 堆排序调整堆算法
public void sift(int low, int high) {
int i = low;
int j = 2 * i + 1;
Record temp = r[i];
while (j < high) {
// 如果右子结点小于左子结点,则对右子结点进行操作
// 升序大顶堆,降序小顶堆。此处为小顶堆,小的在上大的在下
if (j < high - 1 && r[j].key.compareTo(r[j + 1].key > 0)) {
// j++换到右子结点
j++;
}
if (temp.key.compareTo(rp[i].key) > 0) {
r[i] = r[j];
i = j;
j = 2 * i + 1;
} else {
j = high + 1;
}
}
r[i] = temp;
}
public void heapSort() {
int n =this.curLen;
RecordNode temp;
// 创建堆
for (int i = n/2-1; i>=0; i--) {
sift(i, n);
}
/*
将堆顶元素(最小的元素)与末尾元素交换,将最小元素"沉"到数组末端;
重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,
反复执行调整+交换步骤,直到整个序列有序。
这里做的工作就是下面示意图表示的
*/
for (int i = n - 1; i > 0; i--) {
// 交换无序序列两端的元素
temp = r[0];
r[0] = r[i];
r[i] = temp;
// 剩余未排序的部分元素再次构建堆
sift(0 ,i);
}
}
三、问答题
3.1 排序
3.1.1 时间复杂度和空间复杂度
排序法 | 平均时间 | 最差时间 | 稳定性 | 额外空间 | 备注 |
---|---|---|---|---|---|
冒泡 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | 稳定 | O ( 1 ) O(1) O(1) | 适合少量数据 |
交换排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | 不稳定 | O ( 1 ) O(1) O(1) | 适合少量数据 |
选择 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | 不稳定 | O ( 1 ) O(1) O(1) | 适合少量数据 |
直接插入 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | 稳定 | O ( 1 ) O(1) O(1) | 适合大部分数据已排序 |
基数 | O ( log R B ) O(\log_RB) O(logRB) | O ( log R B ) O(\log_RB) O(logRB) | 稳定 | O ( n ) O(n) O(n) | B是真数(0-9),R是基数(个十百) |
希尔 | O ( n log n ) O(n\log n) O(nlogn) | O ( n m ) , 1 < m < 2 O(n^m),1<m<2 O(nm),1<m<2 | 不稳定 | O ( 1 ) O(1) O(1) | m是所选分组 |
快速 | O ( n log n ) O(n\log n) O(nlogn) | O ( n 2 ) O(n^2) O(n2) | 不稳定 | O ( n log n ) O(n\log n) O(nlogn) | 适合较多数据 |
归并 | O ( n log n ) O(n\log n) O(nlogn) | O ( n log n ) O(n\log n) O(nlogn) | 稳定 | O ( 1 ) O(1) O(1) | 适合较多数据 |
堆 | O ( n log n ) O(n\log n) O(nlogn) | O ( n log n ) O(n\log n) O(nlogn) | 不稳定 | O ( 1 ) O(1) O(1) | 适合较多数据 |
稳定 | 不稳定 |
---|---|
冒泡、直接插入、基数、归并 | 交换、选择、希尔、快速、堆 |
p241-262 四大排序算法,比较长,写在最后面
3.2 最小生成树
p215-220 克鲁斯卡尔算法 普里姆算法
构造最小生成树一定有下面两个特点:
1、尽量选取最小的权值的边,并且不能有回路
2、n个顶点只选取n-1条边。
3.2.1 克鲁斯卡尔算法
根据边的权值递增的方式,一次找出权值尽可能最小的边建立最小生成树。并且规定每次新增的边不能使生成树形成回路。直到找到n-1条边为止。
最小生成树不是唯一的。
3.2.2 普里姆(Prime)算法
不知道怎么说,看图好懂一些。
普里姆算法不同于克鲁斯卡尔算法,它更像是一棵树的生长过程,适合结点数量多的树构建最小生成树。
3.3 建立二叉排序树
p294 292-299
3.3.1 二叉排序树定义
- 若左子树不为空,则左子树上所有结点的值均小于根结点的值。
- 若右子树不为空,则右子树上所有结点的值均大于根结点的值。
- 根结点的左右子树也都是二叉排序树。
3.4 哈希表处理冲突的方法:开放定址法的线性探测
p317
开放定址法是哈希表处理冲突的一种方法,它的基本思想是:当冲突发生时,形成一个地址序列,沿着这个序列逐个探测,知道找到一个“空”的开放地址,就将发生冲突的关键字存放在该地址。
开放定址法的一般形式为:
H
i
=
(
H
(
k
e
y
)
+
d
i
)
%
m
,
(
i
=
1
,
2
,
…
,
k
(
k
≤
m
−
1
)
)
H_i=(H(key)+d_i)\%m,(i=1,2,\dots,k(k\le m-1))
Hi=(H(key)+di)%m,(i=1,2,…,k(k≤m−1))
其中,H(key)是关键字的哈希函数,%是取模,m为哈希表长,di为每次再探测时的地址增量。
线性探测法即地址增量为 d i = 1 , 2 , … , m − 1 d_i=1,2,\dots,m-1 di=1,2,…,m−1的开放定址法,其中i为探测次数。这种方法在解决冲突的时候一,依次探测下一个地址,直到有空的地址后插入。若整个空间都找不到空余的地址,则产生溢出。
线性探测法很容易造成数据元素的“聚集”现象,即多个哈希地址不同的关键字都在争夺同一个后继哈希地址,这种现象对查找不利。
其根本原因是查找序列过分集中在发生冲突的存储单元后面,而没有在整个哈希表空间上分散开来。
3.5 BFS DFS
p208-209
3.5.1 广度优先搜索BFS
从图中的某个顶点V开始,先访问该顶点,在依次访问该顶点的每一个未被访问的邻接点 w 1 , w 2 , … w_1,w_2,\dots w1,w2,…。然后按照邻接点的访问顺序访问 w 1 , w 2 , … w_1,w_2,\dots w1,w2,…未被访问的子邻接点。
重复上述过程知道图中所有顶点都被访问为止。
3.5.2 深度优先搜索DFS
从图的某个顶点V开始访问,然后访问它的任意一个邻接点 w 1 w_1 w1,再从 w 1 w_1 w1出发,访问与 w 1 w_1 w1相邻且为被访问过的顶点 w 2 w_2 w2,再从 w 2 w_2 w2出发进行类似访问。如此进行下去,知道所有子结点的邻接点都被访问过。
之后,退回一步,回到上一个被访问的顶点(递归),看看是否还有其他未被访问的邻接点,如果有,则访问此结点,然后再次从该子结点出发,进行类似的访问操作。
重复以上操作,直到图中所有结点均被访问。
3.6 哈夫曼树的构造
哈夫曼算法:
假设 n n n个叶结点的权值分别为 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,…,wn,则
- 由已知给定的 n n n个权值 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,…,wn,构造一个由 n n n棵二叉树构成的森林 F F F,森林中每一个结点单独作为一棵树(即每棵树仅有一个结点,就是根结点)。每棵树的权值分别为 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,…,wn。
- 在森林中选择根结点的权值最小和次小的两棵树,分部把它们作为左子树和右子树,构建一颗新的二叉树。该新二叉树的根结点权值为左右孩子的权值之和。
- 将新二叉树的左右子树从森林中移除,将新产生的二叉树加入森林中
- 重复上述两点,直到森林中只剩下一颗二叉树为之,这棵树就是哈弗曼树。
四、综合题
4.1 根据前中序遍历建立二叉树、森林
4.1.1根据前中序遍历建立二叉树
思路
- 取先根遍历序列中第一个结点作为根结点
- 在中根遍历序列中寻找根结点,确定根结点在中根遍历序列中的位置,设为 i ( 0 ≤ i ≤ c o u n t ) i(0 \le i \le count) i(0≤i≤count),其中 c o u n t count count为二叉树遍历序列的结点个数
- 在中根遍历序列中确定:
- 根结点之前的 i i i 个结点序列构成左子树的中根遍历序列
- 根结点之后的 c o u n t − i − 1 count-i-1 count−i−1 个结点序列构成右子树的中根遍历序列
- 在先跟遍历序列中确定:
- 根结点之后 i i i 个结点序列构成左子树的先跟遍历序列
- 剩下的 c o u n t − i − 1 count-i-1 count−i−1 个结点序列构成右子树的先跟遍历序列
- 由上述3、4两个步骤又确定了左右子树的先根和中根遍历序列,递归构建完整的二叉树
图解
代码实现
/**
* 通过前序遍历序列和中序遍历序列构建子树
* @param preOrder 前序遍历序列
* @param inOrder 中序遍历序列
* @param preIndex 前序遍历序列索引
* @param inIndex 中序遍历序列索引
* @param count 当前子树的结点数
*/
public BinaryTreeNode(List<T> preOrder, List<T> inOrder,
int preIndex, int inIndex, int count) {
if (count > 0) {
// 先获取根结点
T r = preOrder.get(preIndex);
// 寻找根结点在中根遍历序列中根的位置
int i = 0;
while (i < count) {
if (r == inOrder.get(i + inIndex)) {
break;
}
i++;
}
// 循环结束后,i就是根结点在中序遍历序列中的位置
data = r;
BinaryTreeNode<T> leftNode = new BinaryTreeNode<>(preOrder, inOrder, preIndex + 1, inIndex, i);
if (leftNode.data != null) {
left = leftNode;
}
BinaryTreeNode<T> rightNode = new BinaryTreeNode<>(preOrder, inOrder, preIndex + i + 1, inIndex + i + 1, count - i - 1);
if (rightNode.data != null) {
right = rightNode;
}
}
}
4.1.2 森林与二叉树之间的转换
树 ⇒ \Rightarrow ⇒ 二叉树
p180
- 加线
- 删线
- 旋转
根据算法可得,任何一棵树对应的二叉树的根节点右子树一定为空。
二叉树 ⇒ \Rightarrow ⇒ 树
p180-181
逆过程
- 加线
- 删线
- 旋转
二叉树 ⇒ \Rightarrow ⇒ 森林
先把二叉树切分成子二叉树,再分别转为树
设 B B B是一颗二叉树, r o o t root root是 B B B的根节点, L L L是 B B B的左子树, R R R是右子树。并且 B B B对应的森林 F ( B ) F(B) F(B)中含有 n n n棵树: T 1 , T 2 , … , T n T_1,T_2,\dots,T_{n} T1,T2,…,Tn,则二叉树 B B B可按照如下规则转换成森林 B ( F ) B(F) B(F):
- 若 B B B为空,则 F ( B ) F(B) F(B)为空森林
- 若 B B B不为空,则 F ( B ) F(B) F(B)中第一棵树 T 1 T_1 T1的根节点为二叉树 B B B中的根节点, T 1 T_1 T1中根节点的子树森林由B的左子树 L L L转换而成,即 F ( L ) = { T 11 , T 12 , … , T 1 m } F(L)=\{T_{11},T_{12},\dots,T_{1m}\} F(L)={T11,T12,…,T1m},B的右子树R转换成F(B)中其余树组成的森林,即 F ( R ) = { T 2 , … , T n } F(R)=\{T_2,\dots,T_n\} F(R)={T2,…,Tn}
4.2 将两个带头结点的循环链表合成一个循环链表
p50-51
五、排序算法
5.1 冒泡排序
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( 1 ) O(1) O(1)
- 稳定
public static void bubbleSort(int[] arr) {
for(int i = 0; i < arr.length -1; i++) {
for(int j = 0; j < arr.length - 1 - i; j++) {
if(arr[j] > arr[j+1]) {
//开始进行比较,如果arr[j]比arr[j+1]的值大,那就交换位置
//保证大的数在后,小的数在前
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
5.2 选择排序
每一次都查询余下区间的极值并插入到有序序列的末端
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( 1 ) O(1) O(1)
- 不稳定
public static void selectSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
// 查找获取剩下区间的最小值下标
int minIndex = i;
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
// 下标发生改变则调换元素,
// 否则说明当前元素在正确的位置上,不用调换
if (minIndex != i) {
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
}
}
5.3 直接插入排序
每一次将记录直接插入到有序序列的适当位置
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( 1 ) O(1) O(1)
- 稳定
不带监视哨
/**
* 插入排序
* @param arr
*/
public static void insertSort(int[] arr) {
// 默认第一个数已经排序好,从下标1开始
for (int i = 1; i < arr.length; i++) {
// 将要插入的第i条记录暂存在temp中
int insertValue = arr[i];
// 将有序序列中比temp大的记录后移
int j = i - 1;
while ((j >= 0) && (insertValue < arr[j])) {
arr[j+1] = arr[j];
j--;
}
// 因为最后还有j--才退出循环,所以要j++
arr[j+1] = insertValue;
}
}
带监视哨
每一次都将要插入的数据放在arr[0]处
遍历到最后一轮时,j==0,则arr[0]==arr[k],自动退出循环,省去判断下标越界的操作
/**
* 直接插入排序-带监视哨
* @param arr
*/
public static void insertSortWithGuard(int[] arr) {
for (int i = 1; i < arr.length; i++) {
// 将要插入的第i条记录暂存在arr[0]中,arr[0]作为监视哨
arr[0] = arr[i];
// 将有序序列中比temp大的记录后移
int j = i - 1;
// 遍历到最后一轮时,j\==0,则arr[0]\==arr[k],自动退出循环
// 省去判断下标越界的操作
while (arr[0] < arr[j]) {
arr[j+1] = arr[j];
j--;
}
arr[j+1] = arr[0];
}
}
5.4 希尔排序
又称缩小增量排序。每一次选择不同的增量,将数据划分成不同的组,每一次对单个组进行插入排序,并不断缩小增量,直到有序
- 时间复杂度:取决于增量的选择,区间: [ O ( n 1.3 ) , O ( n 2.0 ) ] [~O(n^{1.3}),~O(n^{2.0})~] [ O(n1.3), O(n2.0) ]
- 空间复杂度: O ( 1 ) O(1) O(1)
- 不稳定
/**
* 希尔排序
* @param arr
* @param incres 增量数组increments
*/
public static void shellSort(int[] arr, int[] incres) {
// 因为用得多所以不在循环内定义
int temp;
// 遍历增量数组,interval为间隔
for (int interval : incres) {
// 分组,进行插入排序
for (int i = interval; i < arr.length; i++) {
temp = arr[i];
// 后移
int j;
for (j = i - interval; j >= 0 && temp < arr[j]; j -= interval) {
arr[j + interval] = arr[j];
}
// 插入
arr[j + interval] = temp;
}
}
}
5.5 快速排序
是冒泡排序的改进
通过一趟排序将要排序的数据分割成两部分,其中一部分的所有数据都比另一部分的所有数据小,然后再以同样的方法对两个子部分的数据进行快速排序,最终得到有序序列
- 时间复杂度:平均 O ( n log 2 n ) O(n\log_2n) O(nlog2n)
- 空间复杂度:递归 O ( log 2 n ) O(\log_2n) O(log2n)
- 不稳定
public static void quickSort(int[] arr) {
quickSort(arr, 0, arr.length - 1);
}
/**
* @param arr 排序数组
* @param left 左哨兵
* @param right 右哨兵
*/
public static void quickSort(int[] arr, int left, int right) {
// 如果两个哨兵相遇,则结束循环
if (left < right) {
// 以最左边的数作为中心点(pivot)
int i = left, j = right, pivot = arr[left];
while (i < j) {
// 从右向左找第一个小于x的数
while (i < j && arr[j] >= pivot) {
j--;
}
if (i < j) {
// 退出循环有两种情况,i > j 或者 arr[j] < pivot
// 如果能够进入该if语句说明是arr[j] < pivot,可以交换
arr[i++] = arr[j];
}
// 从左向右找第一个大于等于pivot的数
while (i < j && arr[i] < pivot) {
i++;
}
if (i < j) {
arr[j--] = arr[i];
}
}
arr[i] = pivot;
/*
至此完成了一次移位调换
int pivot = arr[i];
arr[i++] = arr[j];
arr[j--] = arr[i];
...
...
arr[i] = pivot;
*/
// 递归调用
quickSort(arr, left, i - 1);
quickSort(arr, i + 1, right);
}
}