数据结构期末考试复习整理

写在前面:
本博客基于学校提供的教材书《数据结构——Java语言描述(第2版)》编写。原意是用于学校期末考的复习整理,也希望能对大家有所帮助!
此次整理是针对学校给出的考点,而不是针对数据结构整个课程的知识点整理。
博客中的页码为教材相关内容的对应页码。图片为原书的照片,代码基本为书上的原版代码,仅供参考。

一、填空题

度数与边数的关系

无向图和有向图

判空判满

连通图的点与边的关系

等等

二、程序填空

2.1 顺序表插入运算

public void insert(int i, Object x) throws Exception {
    if (curLen == listElem.length) {
        // 顺序表已满
        throw new Eception("顺序表已满");
    }
    if (i < 0 || i > curLen) {
        throw new Exception("插入位置不合法");
    }
    for (int j = curLen; j>i; j--) {
        // 元素后移
        listElem[j] = listElem[j - 1];
    }
    // 插入
    listElem[i] = x;
    curLen++;
}

2.2 统计二叉树中结点个数

public int countNode(BiTreeNode tree) {
    int count = 0;
    if (tree != null) {
        LinkQuene quene = new LinkQuene();
        // 根结点入队
        quene.offer(tree);
        while (!L.isEmpty()) {
            tree = (BiTreeNode) quene.poll();
            count++;
            if (T.lchild != null) {
                quene.offer(tree.lchild);
            }
            if (T.rchild != null) {
                quene.offer(tree.rchild);
            }
        }
    }
    return count;
}

2.3 顺序查找

public int seqSearch(Comparable key) {
    int i = 0, n = length();
    while (i<n && r[i].key.compareTo(key)!=0) {
        i++;
    }
    // 如果找到了那么会在i<n停下
    if (i < n) {
        return i;
    } else { // 如果一直找不到,那么最后会i>=n而退出循环
        return -1;
    }
}

2.4 堆排序调整堆算法

public void sift(int low, int high) {
    int i = low;
    int j = 2 * i + 1;
    Record temp = r[i];
    while (j < high) {
        // 如果右子结点小于左子结点,则对右子结点进行操作
        // 升序大顶堆,降序小顶堆。此处为小顶堆,小的在上大的在下
        if (j < high - 1 && r[j].key.compareTo(r[j + 1].key > 0)) {
            // j++换到右子结点
            j++;
        }
        if (temp.key.compareTo(rp[i].key) > 0) {
            r[i] = r[j];
            i = j;
            j = 2 * i + 1;
        } else {
            j = high + 1;
        }
    }
    r[i] = temp;
}
public void heapSort() {
    int n =this.curLen;
    RecordNode temp;
    // 创建堆
    for (int i = n/2-1; i>=0; i--) {
        sift(i, n);
    }
    /*
	将堆顶元素(最小的元素)与末尾元素交换,将最小元素"沉"到数组末端;
	重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,
	反复执行调整+交换步骤,直到整个序列有序。
	
	这里做的工作就是下面示意图表示的
	 */
    for (int i = n - 1; i > 0; i--) {
    	// 交换无序序列两端的元素
        temp = r[0];
        r[0] = r[i];
        r[i] = temp;
        // 剩余未排序的部分元素再次构建堆
        sift(0 ,i);
    }
}

heapSort方法中第二个for循环的作用

三、问答题

3.1 排序

3.1.1 时间复杂度和空间复杂度
排序法平均时间最差时间稳定性额外空间备注
冒泡 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1)适合少量数据
交换排序 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1)适合少量数据
选择 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1)适合少量数据
直接插入 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1)适合大部分数据已排序
基数 O ( log ⁡ R B ) O(\log_RB) O(logRB) O ( log ⁡ R B ) O(\log_RB) O(logRB)稳定 O ( n ) O(n) O(n)B是真数(0-9),R是基数(个十百)
希尔 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n m ) , 1 < m < 2 O(n^m),1<m<2 O(nm),1<m<2不稳定 O ( 1 ) O(1) O(1)m是所选分组
快速 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n 2 ) O(n^2) O(n2)不稳定 O ( n log ⁡ n ) O(n\log n) O(nlogn)适合较多数据
归并 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n log ⁡ n ) O(n\log n) O(nlogn)稳定 O ( 1 ) O(1) O(1)适合较多数据
O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n log ⁡ n ) O(n\log n) O(nlogn)不稳定 O ( 1 ) O(1) O(1)适合较多数据
稳定不稳定
冒泡、直接插入、基数、归并交换、选择、希尔、快速、堆

p241-262 四大排序算法,比较长,写在最后面

3.2 最小生成树

p215-220 克鲁斯卡尔算法 普里姆算法

构造最小生成树一定有下面两个特点:

1、尽量选取最小的权值的边,并且不能有回路

2、n个顶点只选取n-1条边。

3.2.1 克鲁斯卡尔算法

根据边的权值递增的方式,一次找出权值尽可能最小的边建立最小生成树。并且规定每次新增的边不能使生成树形成回路。直到找到n-1条边为止。

最小生成树不是唯一的。

3.2.2 普里姆(Prime)算法

不知道怎么说,看图好懂一些。

普里姆算法不同于克鲁斯卡尔算法,它更像是一棵树的生长过程,适合结点数量多的树构建最小生成树。

3.3 建立二叉排序树

p294 292-299

3.3.1 二叉排序树定义
  1. 若左子树不为空,则左子树上所有结点的值均小于根结点的值。
  2. 若右子树不为空,则右子树上所有结点的值均大于根结点的值。
  3. 根结点的左右子树也都是二叉排序树。

在这里插入图片描述

3.4 哈希表处理冲突的方法:开放定址法的线性探测

p317

开放定址法是哈希表处理冲突的一种方法,它的基本思想是:当冲突发生时,形成一个地址序列,沿着这个序列逐个探测,知道找到一个“空”的开放地址,就将发生冲突的关键字存放在该地址。

开放定址法的一般形式为:
H i = ( H ( k e y ) + d i ) % m , ( i = 1 , 2 , … , k ( k ≤ m − 1 ) ) H_i=(H(key)+d_i)\%m,(i=1,2,\dots,k(k\le m-1)) Hi=(H(key)+di)%m,(i=1,2,,k(km1))
其中,H(key)是关键字的哈希函数,%是取模,m为哈希表长,di为每次再探测时的地址增量。

线性探测法即地址增量为 d i = 1 , 2 , … , m − 1 d_i=1,2,\dots,m-1 di=1,2,,m1的开放定址法,其中i为探测次数。这种方法在解决冲突的时候一,依次探测下一个地址,直到有空的地址后插入。若整个空间都找不到空余的地址,则产生溢出。

线性探测法很容易造成数据元素的“聚集”现象,即多个哈希地址不同的关键字都在争夺同一个后继哈希地址,这种现象对查找不利。

其根本原因是查找序列过分集中在发生冲突的存储单元后面,而没有在整个哈希表空间上分散开来。

3.5 BFS DFS

p208-209

3.5.1 广度优先搜索BFS

从图中的某个顶点V开始,先访问该顶点,在依次访问该顶点的每一个未被访问的邻接点 w 1 , w 2 , … w_1,w_2,\dots w1,w2,。然后按照邻接点的访问顺序访问 w 1 , w 2 , … w_1,w_2,\dots w1,w2,未被访问的子邻接点。

重复上述过程知道图中所有顶点都被访问为止。

3.5.2 深度优先搜索DFS

从图的某个顶点V开始访问,然后访问它的任意一个邻接点 w 1 w_1 w1,再从 w 1 w_1 w1出发,访问与 w 1 w_1 w1相邻且为被访问过的顶点 w 2 w_2 w2,再从 w 2 w_2 w2出发进行类似访问。如此进行下去,知道所有子结点的邻接点都被访问过。

之后,退回一步,回到上一个被访问的顶点(递归),看看是否还有其他未被访问的邻接点,如果有,则访问此结点,然后再次从该子结点出发,进行类似的访问操作。

重复以上操作,直到图中所有结点均被访问。

3.6 哈夫曼树的构造

哈夫曼算法:

假设 n n n个叶结点的权值分别为 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,,wn,则

  1. 由已知给定的 n n n个权值 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,,wn,构造一个由 n n n棵二叉树构成的森林 F F F,森林中每一个结点单独作为一棵树(即每棵树仅有一个结点,就是根结点)。每棵树的权值分别为 w 1 , w 2 , … , w n {w_1,w_2,\dots,w_n} w1,w2,,wn
  2. 在森林中选择根结点的权值最小和次小的两棵树,分部把它们作为左子树和右子树,构建一颗新的二叉树。该新二叉树的根结点权值为左右孩子的权值之和。
  3. 将新二叉树的左右子树从森林中移除,将新产生的二叉树加入森林中
  4. 重复上述两点,直到森林中只剩下一颗二叉树为之,这棵树就是哈弗曼树。

在这里插入图片描述

四、综合题

4.1 根据前中序遍历建立二叉树、森林

4.1.1根据前中序遍历建立二叉树

思路
  1. 取先根遍历序列中第一个结点作为根结点
  2. 在中根遍历序列中寻找根结点,确定根结点在中根遍历序列中的位置,设为 i ( 0 ≤ i ≤ c o u n t ) i(0 \le i \le count) i(0icount),其中 c o u n t count count为二叉树遍历序列的结点个数
  3. 在中根遍历序列中确定:
    1. 根结点之前的 i i i 个结点序列构成左子树的中根遍历序列
    2. 根结点之后的 c o u n t − i − 1 count-i-1 counti1 个结点序列构成右子树的中根遍历序列
  4. 在先跟遍历序列中确定:
    1. 根结点之后 i i i 个结点序列构成左子树的先跟遍历序列
    2. 剩下的 c o u n t − i − 1 count-i-1 counti1 个结点序列构成右子树的先跟遍历序列
  5. 由上述3、4两个步骤又确定了左右子树的先根和中根遍历序列,递归构建完整的二叉树
图解

在这里插入图片描述

代码实现
/**
 * 通过前序遍历序列和中序遍历序列构建子树
 * @param preOrder 前序遍历序列
 * @param inOrder 中序遍历序列
 * @param preIndex 前序遍历序列索引
 * @param inIndex 中序遍历序列索引
 * @param count 当前子树的结点数
 */
public BinaryTreeNode(List<T> preOrder, List<T> inOrder, 
                      int preIndex, int inIndex, int count) {
	if (count > 0) {
		// 先获取根结点
		T r = preOrder.get(preIndex);
		
		// 寻找根结点在中根遍历序列中根的位置
		int i = 0;
		while (i < count) {
			if (r == inOrder.get(i + inIndex)) {
				break;
			}
			
			i++;
		}
		
		// 循环结束后,i就是根结点在中序遍历序列中的位置
		data = r;
		BinaryTreeNode<T> leftNode = new BinaryTreeNode<>(preOrder, inOrder, preIndex + 1, inIndex, i);
		if (leftNode.data != null) {
			left = leftNode;
		}
		BinaryTreeNode<T> rightNode = new BinaryTreeNode<>(preOrder, inOrder, preIndex + i + 1, inIndex + i + 1, count - i - 1);
		if (rightNode.data != null) {
			right = rightNode;
		}
	}
}

4.1.2 森林与二叉树之间的转换

⇒ \Rightarrow 二叉树

p180

  1. 加线
  2. 删线
  3. 旋转

根据算法可得,任何一棵树对应的二叉树的根节点右子树一定为空。

在这里插入图片描述

二叉树 ⇒ \Rightarrow

p180-181

逆过程

  1. 加线
  2. 删线
  3. 旋转

在这里插入图片描述

二叉树 ⇒ \Rightarrow 森林

先把二叉树切分成子二叉树,再分别转为树

B B B是一颗二叉树, r o o t root root B B B的根节点, L L L B B B的左子树, R R R是右子树。并且 B B B对应的森林 F ( B ) F(B) F(B)中含有 n n n棵树: T 1 , T 2 , … , T n T_1,T_2,\dots,T_{n} T1,T2,,Tn,则二叉树 B B B可按照如下规则转换成森林 B ( F ) B(F) B(F)

  1. B B B为空,则 F ( B ) F(B) F(B)为空森林
  2. B B B不为空,则 F ( B ) F(B) F(B)中第一棵树 T 1 T_1 T1的根节点为二叉树 B B B中的根节点, T 1 T_1 T1中根节点的子树森林由B的左子树 L L L转换而成,即 F ( L ) = { T 11 , T 12 , … , T 1 m } F(L)=\{T_{11},T_{12},\dots,T_{1m}\} F(L)={T11,T12,,T1m},B的右子树R转换成F(B)中其余树组成的森林,即 F ( R ) = { T 2 , … , T n } F(R)=\{T_2,\dots,T_n\} F(R)={T2,,Tn}

4.2 将两个带头结点的循环链表合成一个循环链表

p50-51

在这里插入图片描述

五、排序算法

在这里插入图片描述

5.1 冒泡排序

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 稳定
public static void bubbleSort(int[] arr) {
    for(int i = 0; i < arr.length -1; i++) {
        for(int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]) {
                //开始进行比较,如果arr[j]比arr[j+1]的值大,那就交换位置
                //保证大的数在后,小的数在前
                int temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        }
    }
}

5.2 选择排序

每一次都查询余下区间的极值并插入到有序序列的末端

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 不稳定
public static void selectSort(int[] arr) {
    
    for (int i = 0; i < arr.length; i++) {
        // 查找获取剩下区间的最小值下标
        int minIndex = i;
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        // 下标发生改变则调换元素,
        // 否则说明当前元素在正确的位置上,不用调换
        if (minIndex != i) {
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
        }
        
    }
}

5.3 直接插入排序

每一次将记录直接插入到有序序列的适当位置

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 稳定

在这里插入图片描述

不带监视哨

/**
 * 插入排序
 * @param arr
 */
public static void insertSort(int[] arr) {
	// 默认第一个数已经排序好,从下标1开始
	for (int i = 1; i < arr.length; i++) {
		// 将要插入的第i条记录暂存在temp中
		int insertValue = arr[i];
		// 将有序序列中比temp大的记录后移
		int j = i - 1;
		while ((j >= 0) && (insertValue < arr[j])) {
			arr[j+1] = arr[j];
			j--;
		}
		// 因为最后还有j--才退出循环,所以要j++
		arr[j+1] = insertValue;
	}
}

带监视哨

每一次都将要插入的数据放在arr[0]处

遍历到最后一轮时,j==0,则arr[0]==arr[k],自动退出循环,省去判断下标越界的操作

/**
 * 直接插入排序-带监视哨
 * @param arr
 */
public static void insertSortWithGuard(int[] arr) {
	for (int i = 1; i < arr.length; i++) {
		// 将要插入的第i条记录暂存在arr[0]中,arr[0]作为监视哨
		arr[0] = arr[i];
		// 将有序序列中比temp大的记录后移
		int j = i - 1;
		// 遍历到最后一轮时,j\==0,则arr[0]\==arr[k],自动退出循环
         // 省去判断下标越界的操作
		while (arr[0] < arr[j]) {
			arr[j+1] = arr[j];
			j--;
		}
		arr[j+1] = arr[0];
	}
}

5.4 希尔排序

又称缩小增量排序。每一次选择不同的增量,将数据划分成不同的组,每一次对单个组进行插入排序,并不断缩小增量,直到有序

  • 时间复杂度:取决于增量的选择,区间: [   O ( n 1.3 ) ,   O ( n 2.0 )   ] [~O(n^{1.3}),~O(n^{2.0})~] [ O(n1.3), O(n2.0) ]
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 不稳定
/**
 * 希尔排序
 * @param arr
 * @param incres 增量数组increments
 */
public static void shellSort(int[] arr, int[] incres) {
	// 因为用得多所以不在循环内定义
	int temp;
	// 遍历增量数组,interval为间隔
	for (int interval : incres) {
		// 分组,进行插入排序
		for (int i = interval; i < arr.length; i++) {
			temp = arr[i];

			// 后移
			int j;
			for (j = i - interval; j >= 0 && temp < arr[j]; j -= interval) {
				arr[j + interval] = arr[j];
			}
			// 插入
			arr[j + interval] = temp;
		}
	}
}

5.5 快速排序

是冒泡排序的改进

通过一趟排序将要排序的数据分割成两部分,其中一部分的所有数据都比另一部分的所有数据小,然后再以同样的方法对两个子部分的数据进行快速排序,最终得到有序序列

  • 时间复杂度:平均 O ( n log ⁡ 2 n ) O(n\log_2n) O(nlog2n)
  • 空间复杂度:递归 O ( log ⁡ 2 n ) O(\log_2n) O(log2n)
  • 不稳定
public static void quickSort(int[] arr) {
	quickSort(arr, 0, arr.length - 1);
}

/**
 * @param arr   排序数组
 * @param left  左哨兵
 * @param right 右哨兵
 */
public static void quickSort(int[] arr, int left, int right) {
	// 如果两个哨兵相遇,则结束循环
	if (left < right) {
		// 以最左边的数作为中心点(pivot)
		int i = left, j = right, pivot = arr[left];
		while (i < j) {
			// 从右向左找第一个小于x的数
			while (i < j && arr[j] >= pivot) {
				j--;
			}
			if (i < j) {
				// 退出循环有两种情况,i > j 或者 arr[j] < pivot
				// 如果能够进入该if语句说明是arr[j] < pivot,可以交换
				arr[i++] = arr[j];
			}
			// 从左向右找第一个大于等于pivot的数
			while (i < j && arr[i] < pivot) {
				i++;
			}
			if (i < j) {
				arr[j--] = arr[i];
			}
		}
		arr[i] = pivot;
		/*
		至此完成了一次移位调换
		int pivot = arr[i];
		arr[i++] = arr[j];
		arr[j--] = arr[i];
		...
		...
		arr[i] = pivot;
		 */
        
		// 递归调用
		quickSort(arr, left, i - 1);
		quickSort(arr, i + 1, right);
	}
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值