105. 从前序与中序遍历序列构造二叉树
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
- 你可以假设树中没有重复的元素。
例如,输入:
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
输出:[3,9,20,null,null,15,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
前序遍历是根左右,因此preorder第一个元素一定是整个树的根。由于题目说明了没有重复元素,因此我们可以通过preorder[0]去inorder找到根在inorder中的索引pos。
而由于中序遍历是左根右,我们容易找到pos左边的都是左子树,pos右边都是右子树。
Python代码实现:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if len(preorder) == 0:
return None
elif len(preorder) == 1:
return TreeNode(preorder[0])
else:
root = TreeNode(preorder[0])
#锁定中序遍历中根节点的位置
pos = inorder.index(preorder[0])
root.left = self.buildTree(preorder[1:pos+1], inorder[:pos])
root.right = self.buildTree(preorder[pos+1:], inorder[pos+1:])
return root
106. 从中序与后序遍历序列构造二叉树
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
思路和上题类似:
Python代码实现:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
if(len(postorder)==0):
return None
elif(len(postorder)==1):
return TreeNode(postorder[0])
else:
root_index = len(postorder) - 1
root = TreeNode(postorder[root_index])
pos = inorder.index(postorder[root_index])
root.left = self.buildTree(inorder[:pos], postorder[:pos])
root.right = self.buildTree(inorder[pos+1:], postorder[pos:-1])
return root