一文详解Apex的安装和使用教程(一款基于 PyTorch 的混合精度训练加速神器)

前言: 本篇博文主要介绍Apex的安装和使用教程(一款基于 PyTorch 的混合精度训练加速神器)

win 10系统下安装NVIDIA apex

  1. 首先在github下载源码https://github.com/NVIDIA/apex 到本地文件夹
  2. 打开cmd命令窗口,切换到apex所在的文件夹
  3. 使用命令:python setup.py install 即可完成安装

注意事项: 可能会出现的问题:
setuptools有ModuleNotFoundError→更新setuptools

pip install --upgrade setuptools

linux系统下安装NVIDIA apex

安装操作如下所示:

$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Apex的使用教程(PyTorch实现)

首先,Apex是一款由Nvidia开发的基于PyTorch的混合精度训练加速神器,最近Apex更新了API,可以用短短三行代码就能实现不同程度的混合精度加速,训练时间直接缩小一半。可以让你瞬间获得双倍训练速度的快感!想想是是不是很激动。话不多说,直接上代码展示:

PyTorch实现不同程度的混合精度加速:

from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O1") # 这里是“欧一”,不是“零一”
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()

上述几行代码即可实现混合精度加速。如果你不愿意花时间深入了解,读到这基本就可以直接使用起来了。但是如果你希望对FP16和Apex有更深入的了解,下面是一些理论部分的详细讲解:

FP16:半精度浮点数

半精度浮点数是一种计算机使用的二进制浮点数数据类型,使用2字节(16位)存储。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

FP16的优点:

  1. 减少显存占用 现在模型越来越大当你使用Bert这一类的预训练模型时,往往显存就被模型及模型计算占去大半,当想要使用更大的Batch Size的时候会显得捉襟见肘。由于FP16的内存占用只有FP32的一半,自然地就可以帮助训练过程节省一半的显存空间。
  2. 加快训练和推断的计算 与普通的空间时间Trade-off的加速方法不同,FP16除了能节约内存,还能同时节省模型的训练时间。在大部分的测试中,基于FP16的加速方法能够给模型训练带来多一倍的加速体验(爽感类似于两倍速看肥皂剧)。
  3. 张量核心的普及 硬件的发展同样也推动着模型计算的加速,随着Nvidia张量核心(Tensor Core)的普及,16bit计算也一步步走向成熟,低精度计算也是未来深度学习的一个重要趋势,再不学习就out啦。

FP16的缺点:量化误差
这个部分是整个博客最重要的理论核心。 讲了这么多FP16的好处,那么使用FP16的时候有没有什么问题呢?当然有。FP16带来的问题主要有两个:1. 溢出错误;2. 舍入误差。
在这里插入图片描述
在这里插入图片描述

解决问题的办法:混合精度训练+动态损失放大
  1. 混合精度训练(Mixed Precision) 混合精度训练的精髓在于“在内存中用FP16做储存和乘法从而加速计算,用FP32做累加避免舍入误差”。混合精度训练的策略有效地缓解了舍入误差的问题。
  2. 损失放大(Loss Scaling) 即使用了混合精度训练,还是会存在无法收敛的情况,原因是激活梯度的值太小,造成了下溢出(Underflow)。损失放大的思路是:
    • 反向传播前,将损失变化(dLoss)手动增大2^k倍,因此反向传播时得到的中间变量(激活函数梯度)则不会溢出;
    • 反向传播后,将权重梯度缩2^k 倍,恢复正常值。
Apex的新API:Automatic Mixed Precision (AMP)

曾经的Apex混合精度训练的api仍然需要手动half模型以及输入的数据,比较麻烦,现在新的api只需要三行代码即可无痛使用:

from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O1") # 这里是“欧一”,不是“零一”
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()

在这里插入图片描述

干货:踩过的坑
这一部分是整篇博客最干货的部分,基本包括了在apex使用中的踩过的所有的坑,由于apex报错并不明显,常常debug得让人很沮丧,但只要注意到以下的点,95%的情况都可以畅通无阻了:

  1. 判断你的GPU是否支持FP16:支持的有拥有Tensor Core的GPU(2080Ti、Titan、Tesla等),不支持的(Pascal系列)就不建议折腾了。
  2. 常数的范围:为了保证计算不溢出,首先要保证人为设定的常数(包括调用的源码中的)不溢出,如各种epsilon,INF等。
  3. Dimension最好是8的倍数:Nvidia官方的文档的2.2条表示,维度都是8的倍数的时候,性能最好
  4. 涉及到sum的操作要小心,很容易溢出,类似Softmax的操作建议用官方API,并定义成layer写在模型初始化里。
  5. 模型书写要规范:自定义的Layer写在模型初始化函数里,graph计算写在forward里。
  6. 某些不常用的函数,在使用前需要注册:amp.register_float_function(torch, ‘sigmoid’)
  7. 某些函数(如einsum)暂不支持FP16加速,建议不要用的太heavy,xlnet的实现改FP16
  8. 需要操作模型参数的模块(类似EMA),要使用AMP封装后的model。
  9. 需要操作梯度的模块必须在optimizer的step里,不然AMP不能判断grad是否为Nan。
参考链接
  1. https://zhuanlan.zhihu.com/p/79887894
  2. https://nvidia.github.io/apex/amp.html
  3. https://github.com/NVIDIA/apex
  4. Nvidia官方的混合精度训练文档
PyTorch AMP(Automatic Mixed Precision)是一种用于深度学习模型训练加速技术,它可以将低精度的计算操作与高精度的计算操作混合使用,从而在保持模型精度的同时提高训练速度和减少显存占用。具体来说,PyTorch AMP 使用了 NVIDIA Apex 库中的混合精度训练技术,将一些计算操作转换为 FP16(半精度浮点数)格式,从而减少计算和存储的需求。 实现 PyTorch AMP 混合精度训练的步骤如下: 1. 引入必要的库和模块: ```python import torch from torch.cuda.amp import autocast, GradScaler ``` 2. 定义模型和优化器: ```python model = MyModel() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) ``` 3. 定义混合精度训练相关的参数: ```python scaler = GradScaler() ``` 4. 在训练过程中使用 autocast 和 GradScaler 完成混合精度训练: ```python for data, target in train_loader: # 将数据和目标值转换为合适的类型 data, target = data.to(device), target.to(device) # 使用 autocast 进行前向计算和反向传播 with autocast(): output = model(data) loss = loss_function(output, target) # 使用 GradScaler 进行梯度缩放和反向传播 scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() # 清空梯度 optimizer.zero_grad() ``` 在上面的代码中,autocast 用于自动将一些计算操作转换为 FP16 格式,从而提高训练速度;GradScaler 用于梯度缩放和反向传播,确保在低精度的计算下仍能保持模型精度。 需要注意的是,不是所有的计算操作都能够使用 FP16 格式,一些数值较大的计算操作可能会出现溢出等问题。因此,在使用 PyTorch AMP 进行混合精度训练时,需要仔细选择转换的计算操作,并且进行必要的检查和调整。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值