EduCoder:人工智能之决策树算法
第1关:决策树算法求解分类预测问题
编程要求:
本关的编程任务是补全右侧代码片段 build、predict、parse_data、calc_all_gain、calc_attr_gain、calc_bool_gain、get_targ 和 is_leaf 中 Begin 至 End 中间的代码,具体要求如下:
-
在build中,创建一棵决策树,输入参数为根结点;
-
在predict中,根据归纳好的决策树预测输入样例x的谓词 WillWait 状态(Yes 或者 No);
-
在_parse_data_中,解析输入矩阵数据(在 Python 里以二维列表数据存储),各参数详见代码中函数注解,然后返回信息增益最大的属性名称及其属性值列表;
-
在_calc_all_gain_中,计算所有样本的信息熵并返回,各参数详见代码中函数注解;
-
在 calc_attr_gain 中,计算某一特征属性的信息熵并返回,各参数详见代码中函数注解;
-
在_calc_bool_gain_中,计算二值随机变量的信息熵并返回,各参数详见代码中函数注解;
-
在_get_targ_中,计算叶子结点的决策分类标签并返回,各参数详见代码中函数注解;
-
在_is_leaf_中,判断该结点是否为叶子结点,若是则返回 True,否则返回 False。
测试说明:
平台将自动编译补全后的代码,并生成若干组测试数据,接着根据程序的输出判断程序是否正确。
以下是平台的测试样例:
测试输入:
[[example, Alt, Bar, Fri, Hun, Pat, Price, Rain, Res, Type, Est],[x1,
Yes, No, No, Yes, Some, $$$, No, Yes, French, 0-10]]
预期输出:
Yes
代码如下:
# -*- coding: UTF-8 -*-
import math
class TreeNode:
'''决策树结点数据结构
成员变量:
row - int 列表数据的行数,初始13
col - int 列表数据的列数,初始12
data - list[[]] 二维列表数据,初始数据形式在testDecisionTree.py里
第0行:[第0列:example(样本名字) 中间各列(1-10):各个特征属性名称 第11列:WillW ait(目标分类) ]
第1-12行:[样本名字,具体属性值,分类目标]
data = [
['example', 'Alt', 'Bar', 'Fri', 'Hun', 'Pat', 'Price', 'Rain', 'Res', 'Type', 'Est', 'WillW ait'],
['x1', 'Yes', 'No', 'No', 'Yes', 'Some', '$$$', 'No', 'Yes', 'French', '0-10', 'y1=Yes' ],
['x2', 'Yes', 'No', 'No', 'Yes', 'Full', '$', 'No', 'No', 'Thai', '30-60', 'y2=No' ],
........ ..... ..... ......... ............
['x12', 'Yes', 'Yes', 'Yes', 'Yes', 'Full', '$', 'No', 'No', 'Burger', '30-60', 'y12=Yes' ] ]
targ - string 分类结果 Yes No
name - string 结点名字:特征属性名称
attr - list[string] 该特征属性下的各个属性值
children - list[GameNode] 该特征属性下的各个决策树子结点,与 attr 一一对应
'''
def __init__(self, row, col, data):
self.row = row
self.col = col
self.data = data
self.targ = '' # target result
self.name = '' # attribute name
self.attr = [] # attribute value list
self.child = [] # attribute - TreeNode List
class DecisionTree:
'''决策树
成员变量:
root - TreeNode 博弈树根结点
成员函数:
buildTree - 创建决策树
predict - 预测样本分类标签
_parse_data_ - 解析数据中最大信息增益的特性属性
_calc_all_gain_ - 计算整个样本的信息熵
_calc_attr_gain_ - 计算某一特征属性的信息熵
_calc_bool_gain_ - 通用计算函数:计算二值随机变量的信息熵
_get_targ_ - 获取叶子结点的决策分类标签
_is_leaf_ - 判断该结点是否为叶子结点
'''
def __init__(self, row, col, data):
self.root = TreeNode(row, col, data)
def build(self, root):
'''递归法创建博弈树
参数:
root - TreeNode 初始为决策树根结点
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
if self._is_leaf_(root):
root.targ = self._get_targ_(root)
return
root.name, root.attr = self._parse_data_(root.row, root.col, root.data)
idj = [j for j in range(root.col) if root.data[0][j] == root.name][0]
for attr in root.attr:
row = 0
col = root.col - 1
data = []
for i in range(root.row):
if i!=0 and root.data[i][idj] != attr:
continue
tmp = []
for j in range(root.col):
if j == idj:
continue
tmp.append(root.data[i][j])
data.append(tmp)
row += 1
node = TreeNode(row, col, data)
root.child.append(node)
for node in root.child:
self.build(node)
#********** End **********#
def predict(self, root, x):
'''分类预测
参数:
root - TreeNode 决策树根结点
x - [[]] 测试数据,形如:
[ ['example', 'Alt', 'Bar', 'Fri', 'Hun', 'Pat', 'Price', 'Rain', 'Res', 'Type', 'Est'],
['x1', 'Yes', 'No', 'No', 'Yes', 'Some', '$$$', 'No', 'Yes', 'French','0-10'] ]
返回值:
clf - string 分类标签 Yes No
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
if self._is_leaf_(root):
return root.targ
id_name = x[0].index(root.name)
for id_attr, attr in enumerate(root.attr):
if attr == x[1][id_name]:
return self.predict(root.child[id_attr], x)
#********** End **********#
def _parse_data_(self, row, col, data):
'''解析数据:计算数据中最大信息增益的特性属性
参数:
row - int 列表数据的行数
col - int 列表数据的列数
data - list[[]] 二维列表数据,形如:
第0行:[第0列:example(样本名字) 中间各列(1-10):各个特征属性名称 第11列:WillW ait(目标分类) ]
第1-12行:[样本名字,具体属性值,分类目标]
data = [
['example', 'Alt', 'Bar', 'Fri', 'Hun', 'Pat', 'Price', 'Rain', 'Res', 'Type', 'Est', 'WillW ait'],
['x1', 'Yes', 'No', 'No', 'Yes', 'Some', '$$$', 'No', 'Yes', 'French', '0-10', 'y1=Yes' ],
['x2', 'Yes', 'No', 'No', 'Yes', 'Full', '$', 'No', 'No', 'Thai', '30-60', 'y2=No' ],
........ ..... ..... ......... ............
['x12', 'Yes', 'Yes', 'Yes', 'Yes', 'Full', '$', 'No', 'No', 'Burger', '30-60', 'y12=Yes' ] ]
返回值:
clf - string, list[] 信息增益最大的属性名称 及其 属性值列表
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
max_gain = -float('inf')
max_name = ''
max_attr = []
max_idj = -1
all_gain = self._calc_all_gain_(row-1, [x[-1] for x in data[1:]]) # col = 1
#print('all_gain: ', all_gain)
for j in range(1, col-1, 1):
tmp_data = []
for i in range(1, row, 1):
tmp_data.append([data[i][j], data[i][-1]])
tmp_gain = self._calc_attr_gain_(row-1, tmp_data) # col = 2
if (all_gain - tmp_gain) > max_gain:
max_gain = all_gain - tmp_gain
max_name = data[0][j]
max_idj = j
#print(max_gain, max_name, max_idj, tmp_gain, data[0][j], all_gain - tmp_gain)
for i in range(1, row, 1):
if data[i][max_idj] not in max_attr:
max_attr.append(data[i][max_idj])
return max_name, max_attr
#********** End **********#
def _calc_all_gain_(self, row, data):
'''计算整个样本的信息熵
参数:
row - int 列表数据的行数
data - list[] 一维列表数据,形如:[分类目标]
data = ['y1=Yes', 'y2=No', ........, 'y12=Yes']
返回值:
clf - float 信息熵
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
dict_ = {'yes':0.0, 'no':0.0}
for i in range(row):
if data[i][-1] == 's': # 'Yes'
dict_['yes'] += 1.0
else: # 'No'
dict_['no'] += 1.0
sum = 0.0
for key_ in dict_:
sum += (1.0 * dict_[key_] / float(row)) * math.log(1.0 * dict_[key_] / float(row), 2)
return -sum
#********** End **********#
def _calc_attr_gain_(self, row, data):
'''计算某一特征属性的信息熵
参数:
row - int 列表数据的行数
data - list[[]] 二维列表数据(2列),形如:[[某一属性值,分类目标]]
[ ['0-10', 'y1=Yes' ],
['30-60', 'y2=No' ],
........
['30-60', 'y12=Yes' ] ]
返回值:
clf - float 信息熵
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
# attributes
dict_ = {}
for i in range(row):
if data[i][0] not in dict_:
dict_[data[i][0]] = [0.0, 0.0] # [yes, no]
# attribute : yes or no
if data[i][1][-1] == 's': # yes
dict_[data[i][0]][0] += 1.0
else: # no
dict_[data[i][0]][1] += 1.0
sum = 0.0
for key_ in dict_:
p = 1.0 * dict_[key_][0] / (dict_[key_][0] + dict_[key_][1])
sum += (1.0 * (dict_[key_][0] + dict_[key_][1]) / float(row)) * self._calc_bool_gain_(p)
return sum
#********** End **********#
def _calc_bool_gain_(self, p):
'''通用计算函数:计算二值随机变量的信息熵
参数:
p - float 二值随机变量的概率 在[0, 1]之间
返回值:
clf - float 信息熵
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
if p == 1 or p == 0:
return 0.0
return -(p * math.log(p, 2) + (1-p) * math.log((1-p), 2))
#********** End **********#
def _get_targ_(self, node):
'''计算叶子结点的决策分类标签
参数:
node - TreeNode 决策树结点
返回值:
clf - string 分类标签 Yes No
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
yes = 0
no = 0
for i in range(1, node.row, 1):
if node.data[i][-1][-1] == 's': # 'Yes'
yes += 1
else: # 'No'
no += 1
if yes > no:
return 'Yes'
else:
return 'No'
#********** End **********#
def _is_leaf_(self, node):
'''判断该结点是否为叶子结点
参数:
node - TreeNode 决策树结点
返回值:
clf - bool 叶子结点True 非叶子结点False
'''
#请在这里补充代码,完成本关任务
#********** Begin **********#
if node.col == 2: # [ x* , y* ] without any attributes
return True
targ = node.data[-1][-1][-1] # [ x* , attr , y* ] attributes
for i in range(node.row):
if i == 0:
continue
if node.data[i][-1][-1] != targ:
return False
return True # all y* are Yes or No
#********** End **********#