EduCoder:机器学习—KNN算法编程实战:红酒分类
第1关:分析红酒数据
编程要求:
请仔细阅读右侧代码,根据方法内的提示,在Begin - End区域内进行代码补充,完成alcohol_mean函数。该函数需要完成返回红酒数据中的平均酒精含量。其中函数的参数解释如下:
data:红酒数据对象
代码如下:
import numpy as np
def alcohol_mean(data):
'''
返回红酒数据中红酒的酒精平均含量
:param data: 红酒数据对象
:return: 酒精平均含量,类型为float
'''
#********* Begin *********#
return data.data[:,0].mean()
#********* End **********#
第2关:对数据进行标准化
编程要求:
请仔细阅读右侧代码,根据方法内的提示,在Begin - End区域内进行代码补充,完成scaler函数。该函数需要完成是返回标准化后的数据。其中函数的参数解释如下:
data:红酒数据对象。
代码如下:
from sklearn.preprocessing import StandardScaler
def scaler(data):
'''
返回标准化后的红酒数据
:param data: 红酒数据对象
:return: 标准化后的红酒数据,类型为ndarray
'''
#********* Begin *********#
scaler=StandardScaler()
after_scaler=scaler.fit_transform(data['data'])
return after_scaler
#********* End **********#
第3关:使用kNN算法进行预测
编程要求:
请仔细阅读右侧代码,根据方法内的提示,在Begin - End区域内进行代码补充,完成classification函数。该函数需要完成是对测试数据进行红酒分类,并将分类结果返回。其中函数的参数解释如下:
-
rain_feature:训练集数据,类型为ndarray;
-
train_label:训练集标签,类型为ndarray;
-
test_feature:测试集数据,类型为ndarray。
代码如下:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
def classification(train_feature, train_label, test_feature):
'''
对test_feature进行红酒分类
:param train_feature: 训练集数据,类型为ndarray
:param train_label: 训练集标签,类型为ndarray
:param test_feature: 测试集数据,类型为ndarray
:return: 测试集数据的分类结果
'''
#********* Begin *********#
scaler=StandardScaler()
train_feature=scaler.fit_transform(train_feature)
test_feature=scaler.transform(test_feature)
clf=KNeighborsClassifier()
clf.fit(train_feature,train_label)
return clf.predict(test_feature)
#********* End **********#