Mysql一张表可以存储多少数据

Mysql一张表可以存储多少数据

在操作系统中,我们知道为了跟磁盘交互,内存也是分页的,一页大小4KB。同样的在MySQL中为了提高吞吐率,数据也是分页的,不过MySQL的数据页大小是16KB。(确切的说是InnoDB数据页大小16KB)。详细学习可以参考官网 我们可以用如下命令查询到。

通过上面的知识了解到。B+树,只有聚簇索引的叶子节点才会存储数据。大致如下:

那么我们以上图为例:

1: 主键索引为ID,ID假设为bigInt, 则需要8byte的字节存储,加上指向子节点的指针6byte(固定)。

总共是8 + 6 = 14byte

2:一个页为16kb = 16 * 1000 byte。那么16kb / 14byte ≈ 1170个数据。也就是一页可以存储1170个数据节点

3:那么根节点可以存储1170个节点。因为每个节点都可以向下指向。

也就是第二层,可以存储 1170 * 1170 = 1 368 900节点。

4:第一层是一个页,第二层为1170个页。第三层为 1170 * 1170个页。每个页16kb

因为最后一层是存储数据的,假设每行数据为1kb。那么每个页可以存储16行数据。

也就是第三行可以存储 1170 * 1170 * 16  = 21 902 400(两千万条数据)

那么也就是聚簇索引B+树三层就可以存储两千万条的数据,大致如下图:

<think>嗯,用户现在关心的是MySQL存储上限的问题,这其实是个既基础又深入的技术点。从对话历史看,用户之前在用Navicat生成测试数据做删除性能测试,现在突然跳到存储容量问题,可能是想确认生成几十万条数据是否在安全范围内。 用户引用的资料挺有意思,阿里开发手册的500万建议被多处提到,但实际测试案例显示能突破2000万。这里需要帮用户理清三个关键维度:理论极限、性能拐点、实践建议。硬件和配置的影响比想象中大,比如InnoDB页大小默认16KB,但可以调整到64KB,这个细节对数计算影响巨大。 注意到用户贴的测试代码是循环插入,这种场景下索引维护会成为瓶颈,正好解释了为什么到200万条后速度暴跌。应该提醒用户,单纯看数意义不大,更要关注数据总大小和索引大小——毕竟内装不下索引时性能就崩了。 用户可能没意识到的是,删除性能测试其实更依赖磁盘IO和事务设计,而容量上限主要影响查询。这两个测试虽然都用大,但优化方向完全不同。要不要在回答里补充这个对比呢?不过用户没直接问,暂时先聚焦存储问题。 最后生成的三个问题是有意设计的:第一个解释业规范背后的原理;第二个教用户实战排查;第三个针对真正海量数据的场景。用户如果在做压力测试,这些应该都是自然延伸的需求。 </think>MySQL的实际数据存储上限**并非固定数值**,而是由多层因素共同决定。以下是关键要点分析: --- ### **一、存储容量核心限制因素** 1. **文件系统限制** MySQL数据存储在`.ibd`文件中,其最大容量受操作系统限制: - **FAT32**:单文件最大 4GB - **NTFS**:单文件最大 256TB - **EXT4**:单文件最大 16TB *超过此限制将无法存储数据[^1][^3]* 2. **存储引擎特性** - **InnoDB** 的页大小默认为 `16KB` - 理论最大数计算公式: $$ \text{Max Rows} = \frac{2^{64} - 1}{\text{Avg Row Size}} $$ 按每 `100字节` 计算,理论值约 $1.84 \times 10^{19}$ (远超物理存储能力)[^2] 3. **硬件与配置瓶颈** | 资源类型 | 影响维度 | 典型现 | |----------------|--------------------------|-----------------------| | **内** | 索引加载能力 | `innodb_buffer_pool_size` 不足时触发磁盘IO[^1][^3] | | **磁盘IOPS** | 数据读写速度 | 机械硬盘百万后性能骤降 | | **CPU/网络** | 并发处理能力 | 高并发时响应延迟 | --- ### **二、性能临界点实践验证** 1. **阿里开发规范建议** - 单数 > **500万** - 或单容量 > **2GB** *需考虑分库分[^2][^3]* 2. **实测性能拐点** ```java // 持续插入测试代码片段[^3] while(true) { i++; String sql = "INSERT INTO users VALUES('"+i+"','password')"; sta.execute(sql); // 200万后速度降至2-3秒/条 } ``` - **200万**:插入性能显著下降 - **500万**:简单查询响应超500ms - **1000万**:索引失效风险激增 --- ### **三、实战优化建议** 1. **容量监控方法** ```sql -- 查看数据量及大小 SELECT TABLE_NAME AS `名`, TABLE_ROWS AS `数`, ROUND(DATA_LENGTH/(1024*1024),2) AS `数据大小(MB)`, ROUND(INDEX_LENGTH/(1024*1024),2) AS `索引大小(MB)` FROM information_schema.TABLES WHERE TABLE_SCHEMA = 'your_db'; ``` 2. **突破性能瓶颈策略** - **垂直拆分**:将大字段(TEXT/BLOB)分离到扩展 - **水平分区**:按时间或哈希键拆分数据 - **冷热分离**:将历史数据归档至ClickHouse等列数据库 --- ### **关键结论** ✅ **理论极限**:约 $1.84 \times 10^{19}$ (受文件系统约束) ⚠️ **性能拐点**:200~500万(取决于硬件和查询复杂度) 🚀 **最佳实践**:单数控制在500万内,容量低于2GB[^2][^3][^4] > 📌 注:SSD硬盘可将性能拐点提升至800万,但索引优化仍是核心[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值