DH算法原理

 

DH算法原理

 

 

 

DH 是 Diffie-Hellman的首字母缩写,是Whitefield与Martin Hellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为 密钥协商协议而RSA算法是密钥交换算法。

 

本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部分介绍一下DH算法的的步骤,以及由该算法引出的一些问题;第三部分开始讲数学原理。数学原理可能涉及到数论、抽象代数,本篇尽量在每个公式后面证明该公式的正确性。

 

 

简单场景&简单的密钥协商

先从一个应用场景说起:
Alice 和Bob想要在一个不安全的信道共享一个密钥,该密钥可被用来进行后续的其他的操作,并且仅被Alice和Bob所知,第三方无法得知。
一个简单的方法就是,现在全世界都是知道一个值 P=100。Alice生成随机值5,然后乘上P,接着发送Pa = 500给Bob;通样Bob生成随机值6,然后乘上P,接着发送Pb = 600给Alice。
这样,Alice 有 100,5 ,600,Bob有100,6,500。

Alice计算: 随机值5(自己私钥) * 600(对端的公钥) = 3000 等式1
Bob计算 : 随机值6(自己私钥) * 500(对端的公钥) = 3000 等式2


    这样 Alice就和Bob共享了一个值3000,还有谁知道3000这个值呢?我们知道Alice明文的将500发送到不安全信道,Bob明文的将600发送到不安全信道,这也就意味着第三方仅仅知道500 和 600,想要计算获得共享密钥,第三方要么获取到Alice的随机值然后拿它乘上600,要么获取到Bob的随机值然后拿它乘上500,这样才能获取到Alice和Bob的共享密钥。


    问题来了,如何获取到Alice的随机值呢?

    第三方知道,Alice发送的500是由P乘上Alice的随机值得到的,所以问题变成了求方程 x*100 = 500的解。一眼就能看出来,Alice的随机值是5。


上述方法很容易被破解的原因是P太简单了。P值再复杂点怎么样?


例如P = 0x123456781234567812345678
Pa  = 0xAD77D73E0BFC0E3E0BFC0E3D5E84370
Pb  = 0x4EF81E05A6A0F385A6A0F38557A8D58
显然,你不能一眼就求出方程 x*P = Pa 的解


    其实 Alice的随机数为 0x98765432, Bob的随机数为0x45681265。
但是这一切对于计算机来说还是太简单了。例如OpenSSL、Mbedtls等众多的开源库都提供了大数运算的API,计算Pa/P可能就几毫秒甚至几微秒的事情。


    所以怎么要让中间人难以从Pa或者Pb中分解得到Alice或Bob的随机数,而Alice和Bob又能轻松的通过P和随机数计算得到Pa和Pb,就成了设计这个算法的关键。从上面的例子可以看出,简单的乘法运算是不行的。
    一般来说上述所说的全世界都知道的值P称之为公钥,为Alice和Bob的随机数称之为私钥。

 

 

DH算法的一个例子

 

 

 

 

这里举例一个DH算法的例子。

 

例1:

设有这么一个二元组 (q, p) = (3, 7)

 

我们定义Alice和Bob这么一个运算:

 

(1)Alice 选择一个范围在[1, p-1]的随机数,为da= 5

(2)Alice 计算Pa = q^da mod p = 3^5 mod 7 = 5

(3)Bob选择一个范围在[1, p-1]的随机数,为db = 6

(4)Bob计算Pb = q^db mod p = 3^6 mod 7 = 1

(5)Alice和Bob交换Pa和Pb

(6)Alice计算共享密钥S = Pb ^da mod p = 1^5 mod 7 = 1

(7)Bob计算共享密钥S = Pa ^db mod p = 5^6 m 7 = 1

 

    至此,Alice和Bob能够共享一个密钥为1。中间人由于只得到了Pa=5和Pb=1,如果也想要得到S,要么获取da然后执行步骤6中的等式计算得到结果、要么获取db然后执行步骤7中的等式得到结果。而要知道da或者db,需要计算

 

    其实该算法的原理和上一部分中简单乘法及其类似,只是获取da或者db不是简单的方程式了,而是涉及到对数运算。对数运算被认为是“难”的,这个难建立在目前为止没有找到一个快速计算对数的算法,数学上没有证明这个算法是否存在。

 

    看到这肯定有一个问题,随便一个二元组(q, p)都可以参与运算吗?显然不行。

我们来看看如果随便一个(q, p)参与运算,会出现什么情况。

 

例2:

假设(q, p) = (7,15),我们让Alice和Bob再来协商一遍

 

(1)Alice 选择一个范围在[1, p-1]的随机数,为da= 3

(2)Alice 计算Pa = q^da mod p =7^3 mod 15 = 13

(3)Bob选择一个范围在[1, p-1]的随机数,为db = 2

(4)Bob计算Pb = q^db mod p = 7^2 mod 15 = 4

(5)Alice和Bob交换Pa和Pb

(6)Alice计算共享密钥S = Pb ^da mod p = 4^3 mod 15 = 4

(7)Bob计算共享密钥S = Pa ^db mod p = 13^2 mod 15 = 4

 

 

看起来还是协商成功了,那问题在哪?

7^x mod 15:

7^1 mod 15 = 7

7^2 mod 15 = 4

7^3 mod 15 = 13

7^4 mod 15 = 1

7^5 mod 15 = 7

7^6 mod 15 = 4

7^7 mod 15 = 13

7^7 mod 15 = 1

......

 

 

    看到规律了吗?7^x mod 15的结果一共才4种,并且周期循环。

这也就意味着中间人获取到了Pb = 4,中间人不一定需要知道Alice原始的随机值(私钥)是什么,只要在[1 , 14]中随便选择一个满足7^x mod 15 = 13的值进行计算S = 4^7 mod 15 = 4^11 mod 15 = 4 都能正确计算共享密钥。换句话说,中间人不需要暴力遍历[1 , 14]中的所有数就能计算共享密钥。

 

    所以我们选择(b, p)的原则就是,G = b^x mod p,

当x遍历[1, p -1]时,G也遍历了一遍[1, p -1],这样中间人即使暴力破解,在P很大的时候,暴力破解是非常难的。

 

 

 

 

DH背后的数学&DH算法证明

 

 

设 已知 二元组(q, p)

Alice 生成随机值a,计算q^a mod p = Ga

Bob  生成随机值b, 计算q^b mod p = Gb

 

Alice 计算Sa =Gb^a mod p

Bob 计算Sb = Ga^b mod p

 

 

 

我们需要证明Sa=Sb

 

 

 

Sa = Gb^a mod p

     = (q^b mod p)^a mod p

 

 

令q^b mod p = T,则q^b = kp + T,也即T = q^b - kp

Sa = (q^b mod p)^a mod p

= (T)^a mod p

=(q^b - kp)^a mod p

 

    由于对 (q^b - kp)^a展开,除了第一项为q^(ab)以及最后一项为(kp)^a,其余每一

项均存在p,所以计算(q^b - kp)^a mod p之后,只保留了第一项,即Sa = q^(ab) mod p

 

同理可正Sb = q^(ba) mod p = Sa

 

 

 

 

原根

 

    我们在上一节例二中讲到,我们选择的(q, p)尽可能的使得当x遍历[1, p -1]时,

b^x mod p也遍历了一遍[1, p -1]。我们就来介绍一下原根。

 

 

 

定义1:

当 m > 1, gcd(a, m) = 1,则使得 a^e mod m = 1成立的最小正整数e称作整数a

对模m的阶(或指数、乘法周期),记做ord(a)。若a的阶

,

a称作为模m的原根。

 

 

 

 

例二中,7模15的阶是4。

那15有原根吗? 显然,根据定义,找出所有和15互素的数,然后计算他们的

阶,阶无一例外均不是,故15不存在原根。

 

现在我们来看看原根的另一个定理,这个定理对于我们找打合适的(q, p)很重要。

 

 

 

定理1:

设m>1,gcd(a,m) = 1,则

a^0, a^1, a^2, ... a^ord(a)-1 模m两两不同余。

 

 

 

证明:反证法

如若存在K,L(L<K<ord(a)) 使得

a^K = a^L mod m

由于gcd (a , m)=1,即存在a的逆a^-1,故等式两边乘上a^(-L)

a^(k-l) = 1 mod m

即存在k-l,使得a^(k-l) = 1 mod m等式成立,而k-l < ord(a),与阶的定义矛盾。故假设不成立。

 

定理1中a和m的关系,我们就可以用来当做DH算法中的(q,p)。

 

 

 

RFC 3526 中给出了推荐的DH参数。

 

如果绝对对你有用,请打赏5元 http://39.98.242.44

 

 

 

 

 

 

 

已标记关键词 清除标记
相关推荐
<p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">YOLO</span><span style="font-family:'微软雅黑',sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 <span>PyTorch</span>版的<span>YOLOv5</span>轻量而性能高,更加灵活和便利。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv5</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在<span style="color:#e03e2d;"><strong><span>Windows</span></strong></span>系统上做项目演示。包括:安装<span>YOLOv5</span>、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family:微软雅黑, sans-serif;">《</span><span style="font-family:微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family:微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family:宋体;"><span style="font-size:14px;"> </span></span> </p> <p style="margin-left:0cm;">   </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090636458614.jpg" alt="课程内容" width="880" height="356" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637068681.jpg" alt="技巧" width="880" height="706" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637267536.jpg" alt="功能" width="880" height="913" /> </p>
<p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"><strong style="word-break: break-all;">本课程为Django第六季课程:</strong>后台管理的项目实战, 本项目主要实现基本的学生管理,包含的主要知识点有:virtualenv虚拟环境、pip下载包、多app项目开发、templates模板的继承、font-awesome图标的使用、原生SQL语句和数据库交互、ORM模型和数据库交互、LayUI页面布局、jQuery实现用户交互、Ajax的异步请求、页面的块状展示数据、表格展示数据、表格的分页、数据的增改删改、Layer弹出层使用、表单的验证等等知识点。</p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;">本案例完整的演示了项目实现过程,虽然不复杂,但涉及的内容非常多,特别是前后端交互的时候,有诸多的坑等着你去踩,好在王老师全程代码呈现,带着大家一起填坑,大大提高学习效率的同时,也培养了大家良好的代码习惯,希望大家一致跟着王老师学习Python开发。</p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"><span style="word-break: break-all;"><span style="word-break: break-all; color: #ff0000;"><strong style="word-break: break-all;">课程目标:</strong></span><br style="word-break: break-all;" /><span style="word-break: break-all;">本系列课程是从零基础开始并深入讲解Django,最终学会使用Django框架开发企业级的项目。课程知识点详细,项目实战贴近企业需求。本系列课程除了非常详细的讲解Django框架本身的知识点以外,还讲解了web开发中所需要用到的技术,学完本系列课程后,您将独立做出一个具有后台管理系统,并且前端非常优美实用的网站。对于从事一份Python Web开发相关的工作简直轻而易举。</span></span></p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"> </p> <p style="word-break: break-all; margin: 0px; padding: 0px; overflow-wrap: break-word; color: #666666; font-family: Verdana, 'Microsoft YaHei', 宋体; font-size: 14px; background-color: #ffffff;"><span style="word-break: break-all;"><span style="word-break: break-all;"><img src="https://img-bss.csdnimg.cn/202102061554519299.png" alt="" /></span></span></p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页