线性规划的算法和解方程组的方法很像,常用的方程组的解法叫做高斯消元法,对于高斯消元法的基本流程,现给定一组线性方程:
添加图片注释,不超过 140 字(可选)
对于给定的线性方程组,目的是将方程组中同时能够满足三个等式的变量x,y,z求解出来,对于高斯消元法的基本过程主要分为三个步骤,第一就是需要调整方程组中的方程的位置,第二就是要将一个非零常数同时乘以某个方程等号的两边,第三就是将一个方程乘以一个常数之后加上另一个方程,使用这三个步骤对如上给定的方程组进行解方程组的步骤。
第一步需要将第三个方程进行调换,调换第一个方程的位置:
添加图片注释,不超过 140 字(可选)
然后就是第二步,将第一个方程乘以-9和-4,乘了之后就分别加到第二个和第三个方程:
添加图片注释,不超过 140 字(可选)
这里注意到第三个方程中有两个变量的系数变成了0,也就是这两个变量都被消除了,于是就可以直接解出剩下变量的值也就是y的值,y的值对应的就是-4,而这个时候再将第三个方程乘以-6加到第二个方程上之后
添加图片注释,不超过 140 字(可选)
此时的第二个方程中xy的系数都是0,这也就说明他们的作用在该方程中是为了被消除的,此时就可以从方程2中得到z的值是-4/5,最后再把yz的值带入到方程1中得到x的值是-1/5。
这里我们需要注意的是线性方程组与线性规划系统中的约束条件很像,不同点在于线性方程组每个方程对应等号,线性规划系统的约束条件对应的右等号之外还有小于等于号。
以上就是高斯消元法。