对于simplex算法的代码实现最优解存在性的证明

对于任何线性规划系统,并不是都存在最优解,如果在约束条件中,每个常量都是大于等于0的,那么线性规划系统肯定是有最优解的,此时将每个变量选取为0就可以了。而只有当约束条件中的常量有小于0的情况的时候,才需要验证系统是否存在最优解,给出一个反例,进行最优解的存在性的证明:

添加图片注释,不超过 140 字(可选)

对于如上的例子,引入一个新的变量x0,同时将线性规划系统修改为如下:

添加图片注释,不超过 140 字(可选)

如果系统是存在最优解的,那么新系统也存在最优解,而且还是必须是x0=0的情况,首先将其转换成为标准型如下:

添加图片注释,不超过 140 字(可选)

由于第二个约束条件中能够让x0的值增加,因此选中它进行pivot变换,变换之后的整个系统的情况如下:

添加图片注释,不超过 140 字(可选)

这里就注意到此时的目标函数中已经没有变量对应的系数是大于0的了,因此这个时候的算法结束了,所有的非基本元取值为0,基本元取值约束中的常量,于是就有x0=4,这就与要求中的必须存在x0=0会相矛盾,于是也就证明了给定的线性规划系统是不存在最优解的。

使用python代码来实现如下:

def  is_system_feasible(A, b, c):
    has_to_check = False
    for k in range(len(b)): #先检验是否存在小于0的常数
        if b[k] < 0:
            has_to_check = True
            break
    index = 1
    N = []
    B = []
    v = 0
    for i in range(len(A[0])): #设置非基本远变量的下标
        N.append(index)
        index += 1
    for i in range(len(A)): #设置基本远的下标
        B.append(index)
        index += 1
    if has_to_check is False:  #系统存在最优解,返回它的标准形式
        return True
    N_copy = N.copy()
    N_copy.insert(0, 0)  #加入新变量x0的下标
    B_copy = B.copy()
    b_copy = b.copy()
    c_copy = [-1, 0, 0] #目标函数只有一个参数-x0
    A_copy = A.copy()
    for i in range(len(A)):
        A_copy[i].insert(0, -1)  #每个约束条件都添加x0
    l = k
    (N_copy, B_copy, A_copy, b_copy, c_copy, v) = pivot(N_copy, B_copy, A_copy, b_copy, c_copy, v, l, 0)  #转换目标函数使得它包含有系数为正的变量
    (N_copy, B_copy, A_copy, b_copy, c_copy, v) = simplex(N_copy, B_copy, A_copy, b_copy, c_copy, v)
    for i in range(len(B_copy)):
        if B_copy[i] == 0 and b[i] != 0:
            return False
    return True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值