[SCOI2012]滑雪 洛谷p2573

题目描述

a180285非常喜欢滑雪。他来到一座雪山,这里分布着MM条供滑行的轨道和NN个轨道之间的交点(同时也是景点),而且每个景点都有一编号ii(1 \le i \le N1≤i≤N)和一高度H_iHi​。a180285能从景点ii滑到景点jj当且仅当存在一条ii和jj之间的边,且ii的高度不小于jj。 与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在11号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

输入输出格式

输入格式:

 

输入的第一行是两个整数N,MN,M。

接下来11行有NN个整数H_iHi​,分别表示每个景点的高度。

接下来MM行,表示各个景点之间轨道分布的情况。每行33个整数,U_i,V_i,K_iUi​,Vi​,Ki​。表示编号为U_iUi​的景点和编号为V_iVi​的景点之间有一条长度为K_iKi​的轨道。

 

输出格式:

 

输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。

 

输入输出样例

输入样例#1: 复制

3 3 
3 2 1 
1 2 1 
2 3 1 
1 3 10 

输出样例#1: 复制

3 2

说明

【数据范围】

对于30\%30%的数据,保证 1 \le N \le 20001≤N≤2000

对于100\%100%的数据,保证 1 \le N \le 10^51≤N≤105

对于所有的数据,保证 1 \le M \le 10^61≤M≤106 , 1 \le H_i \le 10^91≤Hi​≤109 ,1 \le K_i \le 10^91≤Ki​≤109。

 

dfs记录所能能到达的点和边,然后把边以到达的点得高度为第一关键字,边长为第二关键字跑克鲁斯卡尔。

#include<bits/stdc++.h>
#define f(i,l,r) for(i=(l);i<=(r);i++)
using namespace std;
const int MAXN=100005,MAXM=1000005;
struct Edge{
	int v,w,nxt;
}e[MAXM<<1];
int H[MAXN],h[MAXN],vis[MAXN];
struct Node{
	int u,v,w;
	bool operator < (const Node& tmp)const{
		if(H[v]==H[tmp.v]) return w<tmp.w;
		return H[v]>H[tmp.v];
	}
}a[MAXM<<1];

int fa[MAXN];
int n,m;
int num,cnt,tot;
inline void add(int u,int v,int w)
{
	e[tot].v=v;
	e[tot].w=w;
	e[tot].nxt=h[u];
	h[u]=tot++;
}
void dfs(int u,int fa)
{
	int i;
	if(!vis[u]) num++;
	vis[u]=1;
	for(i=h[u];~i;i=e[i].nxt){
		int v=e[i].v,w=e[i].w;
		if(v==fa) continue;
		a[++cnt].u=u;
		a[cnt].v=v;
		a[cnt].w=w;
		if(vis[v]) continue;
		dfs(v,u);
	}
}
inline void Makeset()
{
	int i;
	f(i,1,n) fa[i]=i;
}
inline int Find(int x)
{
	return fa[x]==x?x:fa[x]=Find(fa[x]);
}
inline bool Union(int x,int y)
{
	x=Find(x);y=Find(y);
	if(x==y) return false;
	fa[x]=y;
	return true;
}
int main()
{
	ios::sync_with_stdio(false);
	int i,j,u,v,w;
	long long ans=0;
	int res=0;
	memset(h,-1,sizeof(h));
	cin>>n>>m;
	f(i,1,n){
		cin>>H[i];
	}
	f(i,1,m){
		cin>>u>>v>>w;
		if(H[u]>=H[v]) add(u,v,w);
		if(H[v]>=H[u]) add(v,u,w);
	}
	dfs(1,-1);
//	cout<<num<<"GGGGG"<<endl;
//	f(i,1,cnt){
//		cout<<a[i].u<<" "<<a[i].v<<" "<<a[i].w<<endl;
//	}
	sort(a+1,a+1+cnt);
	Makeset();
	f(i,1,cnt){
		u=a[i].u;v=a[i].v;w=a[i].w;
		if(Union(u,v)){
			ans+=w;
			res++;
			if(res==num-1) break;
		}
	}
	cout<<num<<" "<<ans<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值