题目描述
a180285非常喜欢滑雪。他来到一座雪山,这里分布着MM条供滑行的轨道和NN个轨道之间的交点(同时也是景点),而且每个景点都有一编号ii(1 \le i \le N1≤i≤N)和一高度H_iHi。a180285能从景点ii滑到景点jj当且仅当存在一条ii和jj之间的边,且ii的高度不小于jj。 与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在11号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?
输入输出格式
输入格式:
输入的第一行是两个整数N,MN,M。
接下来11行有NN个整数H_iHi,分别表示每个景点的高度。
接下来MM行,表示各个景点之间轨道分布的情况。每行33个整数,U_i,V_i,K_iUi,Vi,Ki。表示编号为U_iUi的景点和编号为V_iVi的景点之间有一条长度为K_iKi的轨道。
输出格式:
输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。
输入输出样例
输入样例#1: 复制
3 3 3 2 1 1 2 1 2 3 1 1 3 10
输出样例#1: 复制
3 2
说明
【数据范围】
对于30\%30%的数据,保证 1 \le N \le 20001≤N≤2000
对于100\%100%的数据,保证 1 \le N \le 10^51≤N≤105
对于所有的数据,保证 1 \le M \le 10^61≤M≤106 , 1 \le H_i \le 10^91≤Hi≤109 ,1 \le K_i \le 10^91≤Ki≤109。
dfs记录所能能到达的点和边,然后把边以到达的点得高度为第一关键字,边长为第二关键字跑克鲁斯卡尔。
#include<bits/stdc++.h>
#define f(i,l,r) for(i=(l);i<=(r);i++)
using namespace std;
const int MAXN=100005,MAXM=1000005;
struct Edge{
int v,w,nxt;
}e[MAXM<<1];
int H[MAXN],h[MAXN],vis[MAXN];
struct Node{
int u,v,w;
bool operator < (const Node& tmp)const{
if(H[v]==H[tmp.v]) return w<tmp.w;
return H[v]>H[tmp.v];
}
}a[MAXM<<1];
int fa[MAXN];
int n,m;
int num,cnt,tot;
inline void add(int u,int v,int w)
{
e[tot].v=v;
e[tot].w=w;
e[tot].nxt=h[u];
h[u]=tot++;
}
void dfs(int u,int fa)
{
int i;
if(!vis[u]) num++;
vis[u]=1;
for(i=h[u];~i;i=e[i].nxt){
int v=e[i].v,w=e[i].w;
if(v==fa) continue;
a[++cnt].u=u;
a[cnt].v=v;
a[cnt].w=w;
if(vis[v]) continue;
dfs(v,u);
}
}
inline void Makeset()
{
int i;
f(i,1,n) fa[i]=i;
}
inline int Find(int x)
{
return fa[x]==x?x:fa[x]=Find(fa[x]);
}
inline bool Union(int x,int y)
{
x=Find(x);y=Find(y);
if(x==y) return false;
fa[x]=y;
return true;
}
int main()
{
ios::sync_with_stdio(false);
int i,j,u,v,w;
long long ans=0;
int res=0;
memset(h,-1,sizeof(h));
cin>>n>>m;
f(i,1,n){
cin>>H[i];
}
f(i,1,m){
cin>>u>>v>>w;
if(H[u]>=H[v]) add(u,v,w);
if(H[v]>=H[u]) add(v,u,w);
}
dfs(1,-1);
// cout<<num<<"GGGGG"<<endl;
// f(i,1,cnt){
// cout<<a[i].u<<" "<<a[i].v<<" "<<a[i].w<<endl;
// }
sort(a+1,a+1+cnt);
Makeset();
f(i,1,cnt){
u=a[i].u;v=a[i].v;w=a[i].w;
if(Union(u,v)){
ans+=w;
res++;
if(res==num-1) break;
}
}
cout<<num<<" "<<ans<<endl;
return 0;
}