题目描述
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的mm 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
\mathrm{L} \times \mathrm{K}L×K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
输入输出格式
输入格式:
第一行两个用空格分离的正整数 n,mn,m,代表宝藏屋的个数和道路数。
接下来 mm 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1-n1−n),和这条道路的长度 vv。
输出格式:
一个正整数,表示最小的总代价。
输入输出样例
输入样例#1: 复制
4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1
输出样例#1: 复制
4
输入样例#2: 复制
4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 2
输出样例#2: 复制
5
说明
【样例解释1】
小明选定让赞助商打通了11 号宝藏屋。小明开发了道路 1 \to 21→2,挖掘了 22 号宝 藏。开发了道路 1 \to 41→4