题目描述
小C最近学了很多最小生成树的算法,Prim算法、Kurskal算法、消圈算法等等。正当小C洋洋得意之时,小P又来泼小C冷水了。小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EMvalue(e)<∑e∈ESvalue(e)
这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。
输入输出格式
输入格式:
第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。
输出格式:
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
输入输出样例
输入样例#1: 复制
5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6
输出样例#1: 复制
11
说明
数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。
思路:先生成一棵最小生成树,然后尝试把一条非树边(x,y,w)添加进去,则x与y的路径上会形成一个环,设树上(x,y)之间路径的最大边权为v1,严格次大为v2。若w>v1,则将v1拆掉,得到一个次小生成树的候选答案为sum+w-v1。
若w==v1,同理,候选答案为sum+w-v2。
#include<bits/stdc++.h>
#define f(i,l,r) for(i=(l);i<=(r);i++)
#define ff(i,r,l) for(i=(r);i>=(l);i--)
using namespace std;
const int MAXN=100005,MAXM=300005;
struct Edge{
int v,w,nxt;
}e[MAXM<<1];
struct Node{
int u,v,w;
bool operator < (const Node& tmp)const{
return w<tmp.w;
}
}a[MAXM];
int n,m,h[MAXN],tot;
int Fa[MAXN];
long long sum,ans=1e16;
int vis[MAXN];
int dep[MAXN],fa[MAXN][20],d[MAXN][20],g[MAXN][20];
int ans1,ans2;
inline void add(int u,int v,int w)
{
e[tot]=(Edge){v,w,h[u]};
h[u]=tot++;
}
inline void MakeTable()
{
int i;
f(i,1,n){
Fa[i]=i;
}
}
int Find(int x)
{
return Fa[x]==x?x:Fa[x]=Find(Fa[x]);
}
inline bool Union(int x,int y)
{
x=Find(x);y=Find(y);
if(x==y) return false;
Fa[x]=y;
return true;
}
void dfs(int u)
{
int i,j;
f(i,1,16){
if(dep[u]<(1<<i)) break;
fa[u][i]=fa[fa[u][i-1]][i-1];
d[u][i]=max(d[u][i-1],d[fa[u][i-1]][i-1]);
if(d[u][i-1]==d[fa[u][i-1]][i-1]){
g[u][i]=max(g[u][i-1],g[fa[u][i-1]][i-1]);
}
else if(d[u][i-1]>d[fa[u][i-1]][i-1]){
g[u][i]=max(g[u][i-1],d[fa[u][i-1]][i-1]);
}
else if(d[u][i-1]<d[fa[u][i-1]][i-1]){
g[u][i]=max(d[u][i-1],g[fa[u][i-1]][i-1]);
}
}
for(i=h[u];~i;i=e[i].nxt){
int v=e[i].v,w=e[i].w;
if(v==fa[u][0]) continue;
fa[v][0]=u;
dep[v]=dep[u]+1;
d[v][0]=w;
g[v][0]=-1;
dfs(v);
}
}
inline int lca(int x,int y)
{
int i,t;
if(dep[x]<dep[y]) swap(x,y);
t=dep[x]-dep[y];
f(i,0,16){
if(t&(1<<i)){
x=fa[x][i];
}
}
ff(i,16,0){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
if(x==y) return x;
return fa[x][0];
}
inline int solve(int x,int y)
{
int i,t;
int tmp[5];
if(dep[x]<dep[y]) swap(x,y);
t=dep[x]-dep[y];
f(i,0,16){
if(t&(1<<i)){
tmp[1]=ans1;
tmp[2]=ans2;
tmp[3]=d[x][i];
tmp[4]=g[x][i];
sort(tmp+1,tmp+1+4);
int L=unique(tmp+1,tmp+1+4)-(tmp+1);
ans1=tmp[L];
ans2=tmp[L-1];
x=fa[x][i];
}
}
}
int main()
{
ios::sync_with_stdio(false);
memset(h,-1,sizeof(h));
// cout<<log2(100000)<<endl;
int i,j,u,v,w;
int cnt=0;
cin>>n>>m;
MakeTable();
f(i,1,m){
cin>>u>>v>>w;
a[i]=(Node){u,v,w};
}
sort(a+1,a+1+m);
f(i,1,m){
u=a[i].u,v=a[i].v,w=a[i].w;
if(Union(u,v)){
cnt++;
sum+=w;
add(u,v,w);
add(v,u,w);
vis[i]=1;
if(cnt==n-1) break;
}
}
dfs(1);
f(i,1,m){
ans1=ans2=-1;
if(vis[i]) continue;
u=a[i].u,v=a[i].v,w=a[i].w;
int t=lca(u,v);
solve(u,t);
solve(v,t);
if(w>ans1){
ans=min(ans,sum+w-ans1);
}
else if(w==ans1){
ans=min(ans,sum+w-ans2);
}
}
cout<<ans<<endl;
return 0;
}