springboot+netty+kafka实现设备信息收集-完整demo复制可用
前言
想象一下,你正在开发一款智能设备监控系统,需要实时收集设备的各种信息,但传统的HTTP请求方式无法满足实时性和效率的要求。在这个挑战中,Spring Boot、Netty和Kafka就像是你的得力助手,它们共同构建了一个高效稳定的信息收集系统。本文将带你进入这个充满创新和挑战的领域,探索如何利用这三种技术,实现设备信息的实时采集与处理。
技术点
- springboot
- netty
- tcp
- kafka
场景再现
一般情况设备会绑定一个ip和一个port来发送给tcp服务端消息,至于消息的格式,有的是16进制的,有的直接就是解析后的json,如图所示
项目搭建
maven依赖引入
<spring.boot.version>2.7.8</spring.boot.version>
<kafka.version>2.8.2</kafka.version>
<netty.version>4.1.73.Final</netty.version>
<lombok.version>1.18.24</lombok.version>
<!-- 版本号自己添加 -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
</dependency>
application.yml
文件
# 生产者配置-one
server:
port: 18011
spring:
application:
name: produce-one
kafka:
bootstrap-servers: ubtone.local:9092,ubttwo.local:9092,ubtthree.local:9092
producer:
retries: 3 # 重试次数
batch-size: 16384 # 3k
buffer-memory: 33554432 # 32M
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
acks: 1 # 1代表leader节点写入成功即认为写入成功
kafka生产者
kafkaProduceConfig配置
package fun.acowbo.config;
import lombok.Data;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import java.util.HashMap;
import java.util.Map;
/**
* @author xiaobo
*/
@Configuration
@ConfigurationProperties(prefix = "spring.kafka.producer")
@Data
public class KafkaProducerConfig<K,V> {
// Kafka 服务器地址
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;
// 序列化器配置
private String keySerializer;
private String valueSerializer;
// 重试次数配置
private String retries;
// 批处理大小配置
private String batchSize;
// 缓冲区内存大小配置
private String bufferMemory;
// 确认配置
private String acks;
// 创建并配置生产者工厂
@Bean
public ProducerFactory<K,V> producerFactory() {
Map<String, Object> configProps = new HashMap<>();
configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, keySerializer);
configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, valueSerializer);
configProps.put(ProducerConfig.RETRIES_CONFIG, retries);
configProps.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
configProps.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
configProps.put(ProducerConfig.ACKS_CONFIG, acks);
return new DefaultKafkaProducerFactory<>(configProps);
}
// 创建并配置 KafkaTemplate
@Bean
public KafkaTemplate<K,V> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
}
这样配置的好处
编写这样一个配置类有几个好处:
-
集中管理配置:将 Kafka 生产者的配置信息集中在一个地方管理,使得配置更加清晰和易于维护。
-
解耦合:将配置信息从业务逻辑中分离出来,使得应用程序的其他部分不需要关心具体的 Kafka 配置细节,提高了代码的模块化程度和可重用性。
-
灵活性:通过使用 Spring 的
@ConfigurationProperties
注解,可以方便地从外部配置文件中加载配置信息,使得配置更加灵活,可以在不同的环境中使用不同的配置。 -
可测试性:将配置信息集中在一个类中,便于进行单元测试和集成测试,提高了代码的可测试性。
为什么使用 <K,V>
而不是确定的类型呢?
使用 <K,V>
作为泛型类型参数的好处在于增强了代码的通用性和灵活性。这样设计的主要考虑是为了让这个配置类适用于不同类型的键和值。因为在实际的业务场景中,Kafka 生产者可能需要发送不同类型的消息,例如字符串、整数、自定义对象等。通过使用泛型类型参数 <K,V>
,使得这个配置类可以适用于不同类型的消息,同时保持了代码的简洁性和灵活性。
另外,通过使用泛型类型参数,还可以在编译时进行类型检查,避免了在运行时出现类型错误的可能性,提高了代码的安全性和稳定性。
netty创建TCP服务
kafkaProduceService实现
package fun.acowbo.service;
import fun.acowbo.utils.BoCommonUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Service;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import javax.annotation.Resource;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Random;
/**
* @author todoitbo
* @date 2024/3/14
*/
@Service
@Slf4j
public class ProduceOneService {
@Resource
private KafkaTemplate<String,String> kafkaTemplate;
public static final String ERROR_FILE_PATH = "/Users/xiaobo/Downloads/error.log";
public static final String SUCCESS_FILE_PATH = "/Users/xiaobo/Downloads/success.log";
// 发送消息到 Kafka
public void sendMessage(String topic, String message) {
// 获取当前时间
LocalDateTime dateTime = LocalDateTime.now();
// 定义日期时间格式
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS");
// 格式化日期时间
String formattedDateTime = dateTime.format(formatter);
// 生成5位随机数作为消息的键
Random random = new Random();
String key = formattedDateTime + String.format("%05d", random.nextInt(100000));
// 创建 ProducerRecord 对象
ProducerRecord<String, String> record = new ProducerRecord<>(topic, key, message);
// 发送消息并添加回调
ListenableFuture<SendResult<String, String>> listenableFuture = kafkaTemplate.send(record);
// 添加回调函数
listenableFuture.addCallback(new ListenableFutureCallback<SendResult<String, String>>() {
@Override
public void onSuccess(SendResult<String, String> result) {
try {
// 将成功发送的消息写入成功日志文件
BoCommonUtil.writeFile(result.getRecordMetadata().toString(), SUCCESS_FILE_PATH);
} catch (Exception e) {
log.error("write success file error:{}", e.getMessage());
}
}
@Override
public void onFailure(Throwable ex) {
try {
// 将发送失败的消息写入错误日志文件
BoCommonUtil.writeFile(ex.getMessage(), ERROR_FILE_PATH);
} catch (Exception e) {
log.error("write success file error:{}", e.getMessage());
}
}
});
}
}
解释:
为什么使用 ListenableFutureCallback
?
- 使用
ListenableFutureCallback
的主要好处是异步处理发送消息的结果。当消息发送成功或失败时,可以通过回调函数得知结果,并执行相应的逻辑,例如写入日志文件等。这样可以提高系统的可靠性和健壮性,同时不会阻塞当前线程。
在生产环境中的好处:
- 在生产环境中,由于消息发送可能会受到网络延迟、Kafka 集群负载等因素的影响,因此异步处理发送结果非常重要。通过使用
ListenableFutureCallback
,可以确保消息发送的结果能够被及时处理,并根据实际情况采取相应的措施,例如重试、记录错误日志等,从而保证系统的稳定性和可靠性。