class sklearn.linear_model.
Ridge
(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)
岭回归是一种正则化方法,通过在损失函数中加入L2范数惩罚系项,来控制线性模型的复杂程度,从而使模型更加稳健。
参数
alpha:{float,array-like},shape(n_targets)
α项,其值越大正则化项越大。其必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^-1。 如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。
α项,其值越大正则化项越大。其必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^-1。 如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。
fit_intercept:boolean
是否计算此模型的截距,即b值。如果为False,则不计算b值(模型会假设你的数据已经中心化)
是否计算此模型的截距,即b值。如果为False,则不计算b值(模型会假设你的数据已经中心化)
copy_X:boolean,可选,默认为Tr