(sklearn)岭回归 sklearn.linear_model.Ridge用法

本文介绍了sklearn库中的Ridge回归模型,包括其参数、属性和方法。岭回归通过L2范数正则化控制模型复杂度,适用于防止过拟合。文中详细解释了求解器的选择以及如何训练、预测和评估模型。
摘要由CSDN通过智能技术生成

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)

岭回归是一种正则化方法,通过在损失函数中加入L2范数惩罚系项,来控制线性模型的复杂程度,从而使模型更加稳健。

参数

alpha:{float,array-like},shape(n_targets)
       α项,其值越大正则化项越大。其必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^-1。 如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。

fit_intercept:boolean
       是否计算此模型的截距,即b值。如果为False,则不计算b值(模型会假设你的数据已经中心化)
copy_X:boolean,可选,默认为Tr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值