贪婪法

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

       例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1511单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找111单位面值的硬币和41单位面值的硬币,共找回5个硬币。但最优的解应是35单位面值的硬币。

【问题】       装箱问题

问题描述:装箱问题可简述如下:设有编号为01、…、n-1n种物品,体积分别为v0v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0in,有0viV。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。

       若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:

{     输入箱子的容积;

       输入物品种数n

       按体积从大到小顺序,输入各物品的体积;

       预置已用箱子链为空;

       预置已用箱子计数器box_count0

       for (i=0;i<n;i++)

       {     从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j

              if (已用箱子都不能再放物品i

              {     另用一个箱子,并将物品i放入该箱子;

                     box_count++

              }

              else

                     将物品i放入箱子j

       }

}

       上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:604535202020单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品13;第二只箱子装物品245;第三只箱子装物品6。而最优解为两只箱子,分别装物品145236

       若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。

【程序】

# include <stdio.h>

# include <stdlib.h>

typedef  struct  ele

{     int  vno;

       struct  ele  *link;

}     ELE;

typedef  struct  hnode

{     int  remainder;

       ELE  *head;

       Struct  hnode  *next;

}     HNODE;

 

void  main()

{     int  n, i, box_count, box_volume, *a;

       HNODE  *box_h,  *box_t,  *j;

       ELE   *p,  *q;

       Printf(“输入箱子容积/n”);

       Scanf(“%d”,&box_volume);

       Printf(“输入物品种数/n”);

       Scanf(“%d”,&n);

       A=(int *)malloc(sizeof(int)*n);

       Printf(“请按体积从大到小顺序输入各物品的体积:”);

       For (i=0;i<n;i++)    scanf(“%d”,a+i);

       Box_h=box_t=NULL;

       Box_count=0;

       For (i=0;i<n;i++)

       {     p=(ELE *)malloc(sizeof(ELE));

              p->vno=i;

              for (j=box_h;j!=NULL;j=j->next)

                     if (j->remainder>=a[i])   break;

              if (j==NULL)

              {     j=(HNODE *)malloc(sizeof(HNODE));

                     j->remainder=box_volume-a[i];

                     j->head=NULL;

                     if (box_h==NULL)        box_h=box_t=j;

                     else  box_t=boix_t->next=j;

                     j->next=NULL;

                     box_count++;

              }

              else  j->remainder-=a[i];

              for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);

              if (q==NULL)

              {     p->link=j->head;

                     j->head=p;

              }

              else

              {     p->link=NULL;

                     q->link=p;

              }

       }

       printf(“共使用了%d只箱子box_count);

       printf(“各箱子装物品情况如下:”);

       for (j=box_h,i=1;j!=NULL;j=j->next,i++)

       {     printf(“%2d只箱子,还剩余容积%4d,所装物品有;/n”,I,j->remainder);

              for (p=j->head;p!=NULL;p=p->link)

                     printf(“%4d”,p->vno+1);

              printf(“/n”);

       }

}

【问题】       马的遍历

问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。

       马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(ij)方格,下一个可能的位置依次为(i+2j+1)、(i+1j+2)、(i-1j+2)、(i-2j+1)、(i-2j-1)、(i-1j-2)、(i+1j-2)、(i+2j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。

 

4

 

3

 

5

 

 

 

2

 

 

 

 

6

 

 

 

1

 

7

 

0

 

 

       对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(ij)只有三个出口,他们是位置(i+2j+1)、(i-2j+1)和(i-1j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为423,则程序就选择让马走向(i-2j+1)位置。

       由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start1,重新找解。细节以下程序。

【程序】

# include <stdio.h>

int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};

int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};

int board[8][8];

int exitn(int i,int j,int s,int a[ ])

{     int i1,j1,k,count;

       for (count=k=0;k<8;k++)

       {     i1=i+delta_i[(s+k)%8];

              j1=i+delta_j[(s+k)%8];

              if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)

                     a[count++]=(s+k)%8;

       }

       return count;

}

 

int next(int i,int j,int s)

{     int m,k,mm,min,a[8],b[8],temp;

       m=exitn(i,j,s,a);

       if (m==0)              return –1;

       for (min=9,k=0;k<m;k++)

       {     temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b);

              if (temp<min)

              {     min=temp;

kk=a[k];

              }

       }

       return  kk;

}

 

void main()

{     int sx,sy,i,j,step,no,start;

       for (sx=0;sx<8;sx++)

       for (sy=0;sy<8;sy++)

       {     start=0;

              do {

                     for (i=0;i<8;i++)

                            for (j=0;j<8;j++)

                                   board[i][j]=0;

                     board[sx][sy]=1;

                     I=sx;       j=sy;

                     For (step=2;step<64;step++)

                     {     if ((no=next(i,j,start))==-1)   break;

                            I+=delta_i[no];

                            j+=delta_j[no];

                            board[i][j]=step;

                     }

                     if (step>64)    break;

                     start++;

              } while(step<=64)

              for (i=0;i<8;i++)

              {     for (j=0;j<8;j++)

                            printf(“%4d”,board[i][j]);

                     printf(“/n/n”);

              }

              scanf(“%*c”);

       }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值