本文为企业提供了实施生成式人工智能 (GenAI) 应用程序的指南。它涵盖了一系列关键考虑因素,例如数据所有权和许可、强大的输入验证和清理的重要性、模型稳健性、数据隐私和合规性。
这些要素对于确保使用训练数据的合法权利、保护人工智能系统免受安全威胁以及遵守数据保护法至关重要。
报告探讨了将 GenAI 与现有系统集成的技术挑战,并强调了克服潜在偏见以确保合乎道德的 AI 使用的重要性。报告还强调,在开发、部署和维护 AI 应用程序方面需要具备足够的技术专业知识,以确保其长期可行性和有效性。
其中一个重点是概述各行业的常见 GenAI 应用,包括聊天机器人、内容生成、代码生成、数据增强和增强搜索功能。这些用例展示了 GenAI 在创建新内容、理解上下文、提取因果关系和提出建议方面的多功能能力。
本文为处于人工智能采用各个阶段的公司提供了一个实用框架,从实验性的内部应用到更复杂的生产级部署。
高级路线图
以下路线图步骤假设您已制定 GenAI 策略,并已根据投资回报率确定了一组用例的优先级。
- 数据所有权和许可 → 法律合规性和使用权利
确保使用数据进行训练模型的权利至关重要。了解数据所有权会影响数据是否可以使用、修改或转售,并且遵守数据法规是强制性的。
2. 输入验证和清理 → 防范[注入]攻击
强大的输入验证和清理可以防止恶意数据操纵,保护人工智能免受可能危害系统的注入攻击。
3. 模型鲁棒性→抵抗对抗攻击
通过对抗性训练和输入过滤增强模型鲁棒性,可以提高人工智能抵御旨在引起不正确或有害输出的攻击的能力。模型在不同数据分布中保持质量的能力。
4. 数据隐私与合规→用户信任与法律合规
通过匿名化和加密等措施遵守数据保护法(例如 GDPR、HIPAA)可确保用户数据的安全和法规合规性,从而建立用户之间的信任。
5. 技术挑战(例如与现有系统的集成)→高效的运营工作流程
克服人工智能与遗留系统集成的技术障碍并设计有效的 API 可确保人工智能的实施能够增强而不是破坏现有的运营工作流程。
6. 道德考量→减轻偏见
通过多样化训练数据和遵守道德准则来解决人工智能应用中的潜在偏见,可以防止公众认知的扭曲并确保公平的人工智能输出。
7. 技术专长→可持续的人工智能部署和维护
开发和维护人工智能应用程序需要技术专长,这对于应对与大规模人工智能模型相关的挑战以及确保其长期可行性和有效性至关重要。
8. 问题解决方案契合度→人工智能技术的有效应用
将人工智能的能力与正确的问题相匹配,可确保该技术得到有效利用,最大限度地发挥其优势和对特定任务的适用性。
9. 数据可用性和质量→准确有效的人工智能输出
高质量和相关的数据对于训练人工智能的有效运行至关重要,确保人工智能能够准确理解和响应用户查询。
通用一代人工智能采用策略和应用领域
生成式人工智能 (GenAI) 是人工智能中自然语言处理、理解和生成的融合,它是每家公司战略的一部分,这些公司不仅希望保持相关性,而且希望通过更高的生产力、效率和执行速度来增加其业务影响力。
使用 GenAI,我们可以创建新内容或合成内容、推理、理解查询/提示上下文、提取因果关系并提出建议。它在许多(如果不是所有)行业中都有广泛的应用。
采用策略
许多公司从内部用例开始,风险较低、优先级较低的用例和业务影响区域,通过实施护栏和幻觉缓解策略来获得对结果的更多信心和信任,然后逐渐将其应用转移到面向外部的应用程序。
实验和研究逐渐让位于更合理、更引人注目的应用程序和用例实现。它们逐渐成熟,成为更具生产级的应用程序。随着项目逐渐成熟并投入生产,仍然存在许多内部障碍:法律、信息安全等。相应地,随着更复杂的用例和证明点的实现,如果技能得到发展,专业知识也日趋成熟,复杂性也会随之增加。
常见用例和应用领域
在本节中,我们将探讨一些在各个企业中获得关注的常见 Gen AI 应用领域。
- 聊天机器人和虚拟助手: Gen AI 可用于创建能够提供客户支持、回答问题和完成任务的聊天机器人和虚拟助手。
- 内容生成: Gen AI 可用于生成营销文案、产品描述和社交媒体帖子。它还可用于创建更具创意的内容,例如诗歌、代码、脚本、乐曲、电子邮件、信件等。
- 代码生成和辅助: Gen AI 可用于根据自然语言提示生成代码。它还可用于自动执行代码重构、调试和测试用例生成。
- 数据增强: Gen AI 可用于生成合成数据,以训练其他机器学习模型。这有助于增强罕见事件或代表性不足的群体的数据集。
- 搜索和信息检索:通过理解查询的语义并提供更全面和上下文感知的答案,Gen AI 可用于改进搜索功能。
这些是一些最常见的 Gen AI 应用领域/用例。随着 Gen AI 技术的不断发展,您可以期待看到更多专门针对每个行业领域的创新应用出现。在下表中,我对比了概念验证的初始较有限的范围和更广泛的生产级用例场景。
开发企业级 LLM 应用程序的关键考虑因素
在使用大型语言模型 (LLM) 开发 AI 应用程序时,安全性是首要考虑的问题。为了保护这些先进的系统,开发人员必须优先考虑多层安全策略。
作为实现生成式 AI 应用时的一个关键考虑因素,我们需要克服一些非常具体的挑战。
这是一个 tldr;
数据所有权和许可。生成式 AI 模型通常在大型数据集上进行训练。确保您有权使用用于训练模型的数据至关重要。
输入验证和清理。如果未经过适当验证,生成式 AI 模型很容易受到注入攻击。输入验证和清理可以帮助防止这些攻击。
模型鲁棒性。生成式 AI 模型可能会被对抗性攻击所欺骗。对抗性训练和输入过滤等技术可以帮助提高模型鲁棒性。
数据隐私和合规性。生成式 AI 应用程序可能会收集和处理敏感数据。遵守所有相关的数据隐私法规非常重要。
更详细地讲。
输入验证和清理
主要安全措施之一是严格验证和过滤用户输入。此过程有助于防止常见的漏洞,例如注入攻击,攻击者可以输入恶意数据来操纵系统。必须仔细检查每个输入,确保它不会干扰后端进程。
模型稳健性和领域拟合度
LLM 的稳健性在于它能够以稳健、高质量方式为未经过训练的分布单元提供有效的实践生成输出。
模型鲁棒性的另一个关键方面是其抵御和应对对抗性攻击的能力。
这些是攻击者提供输入的技术,旨在混淆或误导 LLM 做出错误决定或泄露敏感信息。强化 LLM 需要使用多种场景对其进行训练,包括潜在的对抗性示例,并采用对抗性训练和输入过滤等技术。这不仅可以提高其抗操纵能力,还可以提高模型的整体性能和可靠性。
数据隐私与合规
遵守数据保护法规不是可选的,而是强制性的。当 LLM 处理个人或敏感数据时,他们必须遵守全球数据保护法,例如 GDPR、HIPAA 或与用户管辖范围相关的其他法律。这包括实施保护用户隐私的措施,例如加密、访问控制和定期审核。通过遵守这些原则,开发人员可以与用户建立信任并确保他们的应用程序既安全又合规。
寻求构建基于 LLM 的应用程序或将 LLM 集成到其应用程序中以注入更高智能(以提高生产力和加快获得结果的时间)的开发人员不仅应该关注这些模型的功能和性能,还应该关注其安全态势。
解决输入验证和清理、测试、调整、增强所选模型的稳健性以及确保严格遵守数据隐私法是此过程中的重要步骤。
通过这样做,您不仅可以提供智能的 AI 解决方案,还可以提供安全、更值得信赖的 AI 解决方案。
使用 LLM 进行内容生成和搜索
在使用大型语言模型 (LLM) 进行内容生成和搜索的领域中,一些复杂的功能对于实现相关性和准确性至关重要。该领域的一个基本挑战是确保 LLM 不仅仅是关键字匹配,还要掌握用户查询背后的含义和意图。这需要先进的自然语言处理技术,可以解释人类语言中的上下文和微妙之处。例如,当用户询问客户服务 AI“我可以不带收据退货吗?”时,LLM 不仅必须理解关键字,还必须理解礼品退货的背景和公司政策,这可能与标准退货查询不同。
使用外部知识源(例如知识图谱或数据库)增强 LLM 可显著提高其提供准确且与上下文相关的响应的能力。这种集成允许模型访问最新信息或行业特定数据,而这些数据本身并不是其训练知识库的一部分。例如,金融服务领域的生成式 AI 可能需要从外部数据库中提取最新的股票市场数据,以便为询问投资策略的用户提供最新且相关的建议。
了解用户的偏好、历史和当前背景对于定制内容生成也起着关键作用。这个过程称为用户建模,它帮助 LLM 根据它所了解的个人偏好和先前的互动情况调整其响应。例如,如果用户经常询问素食食谱,LLM 应该在未来的烹饪推荐中优先考虑此类偏好。这种个性化的参与不仅可以提高用户满意度,还可以使与 AI 的互动更加高效和有效。
这些复杂的功能要求 LLM 不仅具备技术能力,而且还能精细调整以适应人机交互的细微差别和应用领域的特定要求。此类系统的开发需要不断更新和改进,由用户反馈和不断发展的 AI 研究格局推动。这一迭代过程确保 LLM 在其角色中保持有效,并为用户在日常活动或决策过程中提供有价值且可靠的工具。
ISV 构建端到端 LLM 应用程序
当独立软件供应商 (ISV) 开始利用大型语言模型 (LLM) 构建端到端应用程序时,会出现几个关键的考虑因素,尤其是数据所有权和许可方面。必须确定 ISV 是否保留输入模型的数据的所有权,或者权利是否仍属于数据提供商。这一区别至关重要,因为它决定了数据的允许使用、修改和潜在转售。例如,如果 ISV 使用来自医疗保健提供商的专有数据,他们必须同时遵守数据供应商提供的所有权条款和健康数据法规。此外,在为客户构建定制应用程序时,保护客户的专有数据至关重要。ISV 必须建立严格的协议来保护这些数据,确保它不会被重新用于其他客户或暴露给竞争对手。例如,金融服务公司需要保证其敏感数据不会被其他实体(尤其是竞争对手)访问。
开源和商业 LLM 模型之间的选择会影响 ISV 将其产品商业化的能力。虽然开源 LLM 具有成本效益和可访问性,但它们通常带有模糊的许可条款,可能会阻碍商业机会。例如,ISV 可能会使用开源模型来开发聊天机器人,但后来发现许可证中的限制阻止了该产品的销售或在某些市场中的使用。
定制和灵活性对于开发 LLM 应用程序也至关重要。行业和用例千差万别,需要 LLM 提供量身定制的响应。ISV 可能需要调整模型以适应特定的行业术语、风格元素或道德准则。例如,一家律师事务所需要一个不仅能理解法律术语,而且符合保密标准的模型。然而,高水平的定制会使应用程序的维护和更新变得复杂。ISV 必须在定制修改和通用模型可管理性之间取得平衡,以方便未来的调整。
最后,随着应用程序使用量的扩大,可扩展性是一个不容商榷的方面。架构必须支持增加的负载,而不会降低性能。有效的资源管理和架构规划对于应对增长至关重要,正如初创公司的用户群呈指数级增长时所见,需要可扩展的解决方案来保持服务质量。
与现有系统集成
集成挑战包括设计能够促进与其他系统顺畅交互的 API。这些 API 必须具有清晰的文档、强大的错误处理和周到的版本控制,以避免中断。例如,集成 LLM 来处理客户查询的电子商务平台需要一个能够与其现有订单管理系统无缝连接的 API。
此外,新 LLM 技术与旧系统的兼容性也带来了重大障碍。ISV 可能需要开发适配器或中间件来弥补技术差距,确保新的 LLM 应用程序能够与较旧的成熟系统进行通信。一个典型的场景可能是制造公司使用过时的库存管理软件,需要与新的基于 LLM 的预测性维护工具集成。
引入 LLM 还可能颠覆现有的工作流程。ISV 必须仔细考虑新技术如何融入更广泛的运营环境,并为必要的调整做好准备,包括培训员工和调整工作流程。例如,在律师事务所部署基于 LLM 的文档分析工具需要培训律师和律师助理如何与新系统交互并将其输出整合到他们当前的案件处理流程中。
安全注意事项
LLM 应用程序中的安全性至关重要,例如,在防止恶意用户试图引入有害代码或提示的注入攻击时。严格的输入验证和清理协议对于减轻这些风险是必不可少的。采用诸如过滤已知攻击模式、转义特殊字符和限制输入长度等技术来保护应用程序。定期更新这些技术对于应对新威胁至关重要。例如,面向公众的 AI 聊天服务需要采用严格的输入检查,以防止有害内容到达模型并生成不适当的响应。
情境感知对于辨别看似无害但可能在特定情况下是恶意的输入背后的意图至关重要。例如,看似标准客户请求的输入可能被精心设计以利用系统漏洞。因此,LLM 应用程序需要强大的机制来分析输入的情境。
模型稳健性是另一个关键领域,特别是在防御对抗性攻击方面——故意设计的输入会混淆模型并导致不正确或有害的输出。对抗性训练(即在开发过程中让模型接触这些类型的输入)可增强其弹性。此外,输入过滤有助于排除可能表明存在攻击的可疑或异常输入,例如意外的语言使用或句法结构。
数据隐私与合规
对于涉及 LLM 的任何申请,数据隐私和合规性都是至关重要的考虑因素,尤其是在医疗保健和金融等受监管行业中运营的申请。根据地理位置和所处理数据类型,申请必须遵守旨在保护个人数据的法律框架,例如欧洲的《通用数据保护条例》(GDPR)或美国的《健康保险流通与责任法案》(HIPAA)。
确保合规性的一种有效方法是匿名化敏感数据。此过程涉及删除或更改个人身份信息,以便数据不会在不使用其他信息的情况下泄露个人身份,这些信息应单独保存并安全保存。例如,部署在欧洲医院的 LLM 必须在处理患者数据进行分析或共享用于研究目的之前对其进行匿名化,以符合 GDPR 的规定。
加密是保护数据隐私的另一种重要技术。通过加密传输中和静止的数据,应用程序可以保护敏感信息免遭未经授权的访问。例如,使用 LLM 的财务建议应用程序需要加密用户的财务信息和交易详细信息,以防止潜在的数据泄露并确保用户信心。
向用户公开其数据如何被收集、使用和存储也至关重要。这需要通过隐私政策和用户协议进行清晰的沟通。用户应该充分了解数据生命周期,从收集到处理,再到最终删除。例如,根据用户行为定制内容的 LLM 应用程序应该明确告知用户他们的数据是如何被跟踪、存储和使用的,并为他们提供控制数据偏好的选项。
在 LLM 应用程序开发中维护数据隐私和合规性不仅能履行法律/合规义务,还能与用户建立信任,并确保合法、尊重和负责任地处理用户数据。这对于 AI 技术在敏感且高度监管的环境中取得长期成功和获得认可至关重要。
最终客户在实施生成式 AI 应用程序时需要考虑的关键事项
数据可用性和质量
生成式 AI 应用取得成功的最重要方面之一,尤其是在处理聊天机器人等面向客户的工具时,是确保能够访问充足且高质量的数据。为了使 AI 模型有效运行,必须使用相关且无错误的数据对其进行训练,这些数据准确反映其在运营环境中将遇到的场景。例如,如果您正在开发用于客户服务的聊天机器人,则必须拥有大量过去客户互动的数据库。这些数据不仅需要海量以涵盖广泛的查询,而且还需要高质量——没有错误并代表典型的客户问题。这确保聊天机器人能够准确有效地理解和响应用户查询。
问题解决方案契合度
另一个关键考虑因素是评估生成式 AI 应用程序是否是当前特定问题的合适解决方案。必须将 AI 技术的能力与任务需求相结合。人类参与、预测性 AI、具有深度推理能力的生成式 AI 和自主的 LLM 代理的分工都是基于 LLM 的应用程序开发生态系统的一部分,它们都体现在问题解决方案匹配方程中。问题有多少是数据工程,有多少是预测性 AI,哪些部分最好使用 Gen AI 来处理,哪些部分需要通过人类的专业知识和干预来处理。
例如,生成式人工智能在总结大量事实数据方面非常有效,使其成为旨在快速消化和浓缩大量信息的应用程序的理想选择。但是,如果一项任务需要细致入微的理解或创造性解决问题,例如创作原创音乐或制定独特的营销策略,其他技术方法或人类专业知识可能更合适。了解数据和人工智能策略和技术在不同情况下的优势和局限性是有效利用其能力的关键。
伦理考量
生成式人工智能的部署也引发了必须解决的重大伦理问题,尤其是关于人工智能模型中可能存在的偏见。例如,用于生成新闻文章的人工智能可能会在不知不觉中传播其训练数据中固有的偏见。如果不加以谨慎管理,这些偏见可能会扭曲公众的看法并放大现有的社会偏见。
因此,对于开发人员来说,认识到这些潜在的道德问题并实施强有力的措施来减轻偏见至关重要,例如多样化训练数据并在模型的开发和部署阶段应用道德准则。
技术专长
我们将考虑的最后一个方面是提升技能或发展更深的技术专长。生成式 AI 应用程序的开发、部署和维护需要大量的技术专长。
构建和调整复杂的 LLM 通常需要一个熟练的团队,该团队由熟悉生成式 AI 生命周期各个方面的数据工程师、分析师、U/X 设计师、数据科学家和机器学习工程师组成 。