Sequence Swapping ZOJ - 4027

题目让我们在条件满足s[i] = '(' && s[i + 1] = ')'时可以选择进行交换两者位置,
并得到两者的乘积,可以在任何时候,任何地点进行交换

第一眼就觉得是dp,但是按区间dp想了半天没想法,就没做。。

这题遍历一遍括号就能解决,dp数组中记录‘)’向右移的情况

b2数组记录'('前缀和,b2[i] * b[k]代表将输入的字符数组中位于k位置的‘)’移到第i个‘(’之前

dp[i][j]代表前i个‘)’移到第j个‘(’之前或者更往前的最优解

转移公式:dp[n2][i] = dp[n2 - 1][i] + b2[i] * b[k];

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

ll dp[1010][1010];

int main()
{
    int T;
    scanf("%d", &T);
    char ch[1010];
    ll b[1010];
    ll b1[1010], b2[1010];

    while(T--)
    {
        memset(dp, 0, sizeof(dp));
        memset(b, 0, sizeof(b));
        memset(b2, 0, sizeof(b2));
        int n, i, j;
        scanf("%d", &n);
        scanf("%s", &ch);
        for(i = 0; i < n; i++)
        {
            scanf("%lld", &b[i]);
        }
        int n1, n2;
        n1 = 0;
        n2 = 0;
        ll ans;
        ans = 0;
        int k;
        for(k = 0; k < n; k++)
        {
            if(ch[k] == '(')
            {
                for(i = 0; i <= n1; i++)
                {
                    b2[i] += b[k];

                }
                n1++;
            }
            else
            {
                n2++;
                dp[n2][0] = dp[n2 - 1][0] + b2[0] * b[k];
                ans = max(ans, dp[n2][0]);
                for(i = 1; i <= n1; i++)
                {
                    dp[n2][i] = dp[n2 - 1][i] + b2[i] * b[k];
                    ans = max(ans, dp[n2][i]);
                }
                for(i = 1; i <= n; i++)
                {
                    dp[n2][i] = max(dp[n2][i], dp[n2][i - 1]);
                }
            }
        }
        cout << ans << endl;

    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值