题目让我们在条件满足s[i] = '(' && s[i + 1] = ')'时可以选择进行交换两者位置,
并得到两者的乘积,可以在任何时候,任何地点进行交换
第一眼就觉得是dp,但是按区间dp想了半天没想法,就没做。。
这题遍历一遍括号就能解决,dp数组中记录‘)’向右移的情况
b2数组记录'('前缀和,b2[i] * b[k]代表将输入的字符数组中位于k位置的‘)’移到第i个‘(’之前
dp[i][j]代表前i个‘)’移到第j个‘(’之前或者更往前的最优解
转移公式:dp[n2][i] = dp[n2 - 1][i] + b2[i] * b[k];
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[1010][1010];
int main()
{
int T;
scanf("%d", &T);
char ch[1010];
ll b[1010];
ll b1[1010], b2[1010];
while(T--)
{
memset(dp, 0, sizeof(dp));
memset(b, 0, sizeof(b));
memset(b2, 0, sizeof(b2));
int n, i, j;
scanf("%d", &n);
scanf("%s", &ch);
for(i = 0; i < n; i++)
{
scanf("%lld", &b[i]);
}
int n1, n2;
n1 = 0;
n2 = 0;
ll ans;
ans = 0;
int k;
for(k = 0; k < n; k++)
{
if(ch[k] == '(')
{
for(i = 0; i <= n1; i++)
{
b2[i] += b[k];
}
n1++;
}
else
{
n2++;
dp[n2][0] = dp[n2 - 1][0] + b2[0] * b[k];
ans = max(ans, dp[n2][0]);
for(i = 1; i <= n1; i++)
{
dp[n2][i] = dp[n2 - 1][i] + b2[i] * b[k];
ans = max(ans, dp[n2][i]);
}
for(i = 1; i <= n; i++)
{
dp[n2][i] = max(dp[n2][i], dp[n2][i - 1]);
}
}
}
cout << ans << endl;
}
return 0;
}