Since he is going to attend a number of parties on the Halloween night, and wear costumes accordingly, he will be changing his costumes a number of times. So, to make things a little easier, he may put on costumes one over another (that is he may wear the uniform for the postman, over the superman costume). Before each party he can take off some of the costumes, or wear a new one. That is, if he is wearing the Postman uniform over the Superman costume, and wants to go to a party in Superman costume, he can take off the Postman uniform, or he can wear a new Superman uniform. But, keep in mind that, Gappu doesn't like to wear dresses without cleaning them first, so, after taking off the Postman uniform, he cannot use that again in the Halloween night, if he needs the Postman costume again, he will have to use a new one. He can take off any number of costumes, and if he takes off k of the costumes, that will be the last k ones (e.g. if he wears costume A before costume B, to take off A, first he has to remove B).
Given the parties and the costumes, find the minimum number of costumes Gappu will need in the Halloween night.
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer N (1 ≤ N ≤ 100) denoting the number of parties. Next line contains N integers, where the ith integer ci (1 ≤ ci ≤ 100) denotes the costume he will be wearing in party i. He will attend party 1 first, then party 2, and so on.
For each case, print the case number and the minimum number of required costumes.
2
4
1 2 1 2
7
1 2 1 1 3 2 1
Case 1: 3
Case 2: 4
题目大意:衣服可以多套一起穿身上,可以再穿,也可以脱下来,但是脱下来之后,衣服就被嫌弃了,不能再穿上。
很一般的区间DP,dp[i][j]指的是从i到j最少需要的套数
dp[i][j] = min(dp[i + 1][k - 1] + dp[k][j]);
相当于在最外层穿着a[i]的情况下进行 i + 1 ~ k - 1,然后在进行k ~ j
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = 110;
int main ()
{
int dp[MAXN][MAXN];
int i, j, k, n, nn, ii = 1;
int a[MAXN];
scanf("%d", &nn);
while(nn--)
{
scanf("%d", &n);
for(i = 1; i <= n; i++)
{
cin >> a[i];
}
for(i = 1; i <= n; i++)
{
for(j = i; j <= n; j++)
{
dp[i][j] = j - i + 1;
}
}
for(i = n - 1; i > 0; i--)
{
for(j = i + 1; j <= n; j++)
{
dp[i][j] = dp[i + 1][j] + 1;
for(k = i + 1; k <= j; k++)
{
if(a[i] == a[k])
dp[i][j] = min(dp[i][j], dp[i + 1][k - 1] + dp[k][j]);
}
}
}
printf("Case %d: %d\n", ii++, dp[1][n]);
}
return 0;
}