T1
只需要注意前缀输出ok了
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int MAX_N=5e2+5;
const int MAX_K=5e2+5;
const int MAX_V=5e2+5;
int w[MAX_N][MAX_N];
int dp[MAX_N][MAX_N];
int r[MAX_N][MAX_N];
int c[MAX_N],p[MAX_N];
void output(int i,int j){
if(i==0) return;
output(i-1,j-r[i][j]*c[i]);
printf("%d\n",r[i][j]);
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
memset(r,0,sizeof(r));
for(int i=1;i<=n;i++){
scanf("%d%d",&c[i],&p[i]);
for(int j=1;j<=p[i];j++)scanf("%d",&w[i][j]);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k*c[i]<=j&&k<=p[i];k++)
{
int t=dp[i-1][j-k*c[i]]+w[i][k];
if(dp[i][j]<t)
{
dp[i][j]=t;
r[i][j]=k;//第i层 剩余用了j个金币所要的升k级
}
}
}
}
printf("%d\n",dp[n][m]);
int x;
for(int j=1;j<=m;j++)
{
if(dp[n][j]==dp[n][m])
{
x=j;
break;
}
}
output(n,x);
}
return 0;
}
T2
#include<bits/stdc++.h>
using namespace std;
int n,m,s,r,W,a[210][210],b[210][210],c[20101],f[21100],t[21010],w[20110],p;
int main()
{
cin>>n>>m>>s>>r;
W=min(s,r-1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>b[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]>0&&b[i][j]>0)
{
w[++p]=(i+j)*2;
c[p]=a[i][j];
t[p]=b[i][j];
}
for(int i=1;i<=p;i++)
for(int k=1;k<=t[i];k++)
for(int j=W;j>=w[i];j--)
//for(int j=0;j<=W;++j)
//for(int k=0;k<=t[i];++k)
if(j>=w[i])f[j]=max(f[j],f[j-w[i]]+c[i]);
cout<<f[W];
return 0;
}
T3
添加链接描述
描述
今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:
设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串:312,当N=3,K=1时会有以下两种分法:
1) 3*12=36
2) 31*2=62
这时,符合题目要求的结果是:31*2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
输入
程序的输入共有两行:
第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
第二行是一个长度为N的数字串。
输出
输出所求得的最大乘积(一个自然数)。(保证最终答案不超过int范围)
样例输入
4 2
1231
样例输出
62
#include<bits/stdc++.h>
using namespace std;
const int maxn=405;
int n,k;
char s1[maxn];
int num[maxn][maxn];
int dp[maxn][maxn];//dp[i][j]表示前i个数用了j个乘号
int main()
{
cin >> n>> k>> s1;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
for(int k=i;k<=j;++k)
{
num[i][j]=num[i][j]*10+s1[k-1]-'0';
}
}
}
for(int i=1;i<=n;++i)
{
dp[i][0]=num[1][i];
}
for(int i=1;i<=k;++i)//乘号个数 ,同时也可以是区间起点
{
for(int j=i+1;j<=n;++j)//枚举长度 ,同时也是区间终点
{
for(int k=i;k<=j-1;++k)//枚举中间点
{
dp[j][i]=max(dp[j][i],dp[k][i-1]*num[k+1][j]);
}
}
}
printf("%d",dp[n][k]);
return 0;
}