INT305 L9 Note

这篇博客介绍了概率模型的概念,以偏倚硬币为例,解释了伯努利随机变量和独立同分布的原理。接着深入讨论了最大似然估计(MLE),包括似然函数、对数似然函数和求解过程,并提到了似然与概率的关系以及在交叉熵中的应用。最后,简要提及了分类问题中的判别和生成方法。
摘要由CSDN通过智能技术生成

Probabilistic Models

本lec内容将会在期末考试中占比20%并且是新增内容,在去年的期末试卷中没有出现

A simple biased coin example:

You flip a coin N = 100 N = 100 N=100 times and get outcomes { x 1 , . . . , x N } \{x_1,...,x_N\} { x1,...,xN} where x i ∈ { 0 , 1 } x_i \in \{0,1\} xi{ 0,1} and x i = 1 x_i=1 xi=1 is interpreted as heads H H H . Suppose you had N H = 55 N_H =55 NH=55 heads and N T = 45 N_T = 45 NT=45 tails. What is the probability it will come up heads if we flip again? Let’s design a model for this scenario, fit the model. We can use the fit model to predict the next outcome.

The coin is possibly loaded. (这里的loaded指硬币不平衡,也就是正反面的概率不一样) So, we can assume that one coin flip outcome x is a Bernoulli random variable(伯努利随机变量) for some currently unknown parameter θ ∈ [ 0 , 1 ] \theta \in [0,1] θ[0,1]

补充: 伯努利随机变量只有两类结果(01,成功失败), 两类结果的可能性之和为1. 也就是

p ( x = 1 ∣ θ ) = θ p(x=1 \mid \theta)=\theta p(x=1θ)=θ and p ( x = 0 ∣ θ ) = 1 − θ p(x=0 \mid \theta)=1-\theta p(x=0θ)=1θ
or more succinctly p ( x ∣ θ ) = θ x ( 1 − θ ) 1 − x i p(x \mid \theta)=\theta^x(1-\theta)^{1-x_i} p(

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值