透彻理解迪杰斯特拉算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mu399/article/details/50903876

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,这个算法我主动学了三遍,第一主动学的时候,是看严蔚敏的《数据结构》,当时应该是学懂了,有点透彻地理解了这个算法,但是没有记录下来,后来就忘记了, 第二次主动学,就去网上找相关文章,看了不少关于这个算法的讲解,但总感觉都没有讲透,看得我二懂二懂的,昨天晚上,突然又想到这个算法,发现我还是不熟悉这个算法,又忘记Dijkstra 算法是怎么一回事了,决定再看这个算法一遍,虽然已经快12点了,平时这个时候已经躺床上了。 这次终于彻底搞懂,并决定写成博客记录下来。

Dijkstra 算法,用于对有权图进行搜索,找出图中两点的最短距离,既不是DFS搜索,也不是BFS搜索。
把Dijkstra 算法应用于无权图,或者所有边的权都相等的图,Dijkstra 算法等同于BFS搜索。

http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

例子
先给出一个无向图
用Dijkstra算法找出以A为起点的单源最短路径步骤如下

不要看算法的动画,理解算法的时候,思维更不上GIF动画的速度,这两张图对理解算法最管用
重点需要理解这句拗口的”按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度

实际上,Dijkstra 算法是一个排序过程,就上面的例子来说,是根据A到图中其余点的最短路径长度进行排序,路径越短越先被找到,路径越长越靠后才能被找到,要找A到F的最短路径,我们依次找到了
A –> C 的最短路径 3
A –> C –> B 的最短路径 5
A –> C –> D 的最短路径 6
A –> C –> E 的最短路径 7
A –> C –> D –> F 的最短路径 9
Dijkstra 算法运行的附加效果是得到了另一个信息,A到C的路径最短,其次是A到B, A到D, A到E, A到F

为什么Dijkstra 算法不适用于带负权的图?
就上个例子来说,当把一个点选入集合S时,就意味着已经找到了从A到这个点的最短路径,比如第二步,把C点选入集合S,这时已经找到A到C的最短路径了,但是如果图中存在负权边,就不能再这样说了。举个例子,假设有一个点Z,Z只与A和C有连接,从A到Z的权为50,从Z到C的权为-49,现在A到C的最短路径显然是A –> Z –> C

对带负权的图,应该用Floyd算法

再举一例, 初点a到b最短有权10,b到c有权50,a到d有权30,d到c有权20,求a到c的最短路径。

迪杰斯特拉算法的运行过程是一个排序的过程,既不是深度优先也不是广度优先算法。 就这个简单的例子而言,a和b都被加入S集合后,这时下一个要加入S集合结点,并不一定是c节点。 请把a和b节点组成的集合作为一个整体来考虑,当算法运行到 a和b 都被加入S集合后,你甚至都可以把 a 和 b在图中去掉用一个虚拟的s节点来表示,a 和 b 作为一个整体后,和这个整体相连接的边,最短的就是 a 到 d 这条边,但是,这时并不能直接因为这条边的权最小 就将d 加入 S 集合; 现在,再来假设 b 到 c的权不是50,而是25; 现在和 S 集合相连接的边有a到d 30, b到c 25; 这时,b到c的权值最小,但却不能加入S集合, 因为 a 到 b 再到 c的权是 10 + 25 已经大于 a 到 d的权 30, 所以 d 应该加入 S 集合,而不是 c; 如果b 到 c的权值小于20,就是 c先加入 S 集合,而不是 d 了; b 到 c的权值恰好等于20,那么随便,先把d加入 S 还是 先把 c 加入 S,都是一样的,没有区别。

另外,任意一点k,加入s集合后,就已经找到了从源点a到k的最短路径,前提条件是图中不能有带负数的权值边。 我这样表述可以让算法更清楚,还是这个例子, a和b都被选入 S 集合后,去更新整个图,把a和b都去掉,用新节点 s 代替a和b,s 到 d 有权30, s 到 c 有权 10+50, 下一步该选哪个节点并入 S 集合一目了然了吧。 d点选入 S 集合后,再把d点从图中抹去,更新虚拟的节点 s到c的权

没有更多推荐了,返回首页