题目如下:
给定每个人的家庭成员和其自己名下的房产,请你统计出每个家庭的人口数、人均房产面积及房产套数。
输入格式:
输入第一行给出一个正整数N(≤1000),随后N行,每行按下列格式给出一个人的房产:
编号 父 母 k 孩子1 ... 孩子k 房产套数 总面积
其中编号
是每个人独有的一个4位数的编号;父
和母
分别是该编号对应的这个人的父母的编号(如果已经过世,则显示-1
);k
(0≤k
≤5)是该人的子女的个数;孩子i
是其子女的编号。
输出格式:
首先在第一行输出家庭个数(所有有亲属关系的人都属于同一个家庭)。随后按下列格式输出每个家庭的信息:
家庭成员的最小编号 家庭人口数 人均房产套数 人均房产面积
其中人均值要求保留小数点后3位。家庭信息首先按人均面积降序输出,若有并列,则按成员编号的升序输出。
输入样例:
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100
输出样例:
3
8888 1 1.000 1000.000
0001 15 0.600 100.000
5551 4 0.750 100.000
分析:
这道题做过两次了,第一次还不会并查集,从网上学习了优秀同学的思想以及代码,第二次不长记性,忘性极大,并查集会了但是足够粗心,当用自己的想法做的时候漏洞百出。写博客希望能让自己巩固,不要重复栽跟头。
进入正式分析。这道题采用并查集解决,每输入一个成员编号就进行判断合并。首先需要将每个成员的父亲节点初始化为自己的编号,这是后期判断有多少个家庭的依据;接着,由于结果需要输出每个家庭最小成员的编号,因此在合并过程中(merge函数),将根节点小的那一方作为另一个根节点的父亲节点,以合并为一个家庭同时保证了根节点就是最小成员的编号(此处还要注意父母一方若不在,则不在的那一方不进行合并,否则-1将作为最小的成员编号);合并结束后,可采用循环判断家庭成员个数以及计算结果要求的家庭信息,一个家庭需要满足某个成员编号的根节点是自己以及该成员编号有效即visited值为true(有效表示是题目中出现过的成员编号);最后按照题目要求进行排序,这里需要注意的是,由于初始化时每个成员是一个单独的家庭,并将该家庭中的成员数量记为了0,因此在排序时若该成员不是一个有效编号或单独的家庭,那么计算人均房产时就会出现除0错误,这是我绕来绕去排序错误的原因,切记切记!
跌跟头的地方:
1.将所有题目输入的编号过了一遍并查集后再来计算各种结果需要的信息;
2.排序除0错误;
代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
//并查集
struct Family{
int root; //最小的作为根节点
int num_member;//成员数量
int count; //房产总数
double s; //房产总面积
};
Family families[10000];//下标是家庭编号
int parent[10000];//存每个人的父节点
double property[10000] = {0.0};//记录每个人的财产
bool visited[10000] = {false};//记录该人是否被访问过
int fangchan[10000] = {0};
double fang[10000] = {0.0};
int findRoot(int n){
if(n == parent[n])
return n;
else
return findRoot(parent[n]);
}
void merge(int a,int b){
int a_p = findRoot(a);
int b_p = findRoot(b);
if(a_p < b_p)
parent[b_p] = a_p;
else
parent[a_p] = b_p;
}
bool cmp(Family a,Family b){//坑点:分母为0
double ans_a,ans_b;
if(a.num_member == 0)
ans_a = 0;
else
ans_a = (a.s) / (a.num_member*1.0);
if(b.num_member == 0)
ans_b = 0;
else
ans_b = (b.s) / (b.num_member*1.0);
if(ans_a!=ans_b)
return ans_a > ans_b;
else
return a.root < b.root;
}
int main(){
int count = 0;
//初始化
for(int i = 0 ; i <= 9999 ; i ++)
{
families[i].root = i;
families[i].num_member = 0;
families[i].count = 0;
families[i].s = 0.0;
parent[i] = i;
}
int N;
scanf("%d",&N);
for(int i = 1 ; i <= N ; i ++){
int ziji;
int fu,mu;
int n_kid;
scanf("%d%d%d",&ziji,&fu,&mu);
if(fu!=-1)
merge(ziji,fu);
if(mu!=-1)
merge(ziji,mu);
scanf("%d",&n_kid);
for(int j = 1 ; j <= n_kid ; j++)
{
int kid_num;
scanf("%d",&kid_num);
merge(ziji,kid_num);
visited[kid_num] = true;
}
visited[mu] = true;
visited[fu] = true;
visited[ziji] = true;
int fangchan_count;
double zong_fang;
scanf("%d%lf",&fangchan_count,&zong_fang);
fangchan[ziji] = fangchan_count;
fang[ziji] = zong_fang;
}
for(int i = 0 ; i <= 9999 ; i ++)
{
if(findRoot(i) == i && visited[i])
{
count++;
for(int j = 0 ; j <= 9999 ; j ++)
{
if(findRoot(j) == i)
{
families[i].num_member++;
families[i].count += fangchan[j];
families[i].s += fang[j];
}
}
}
}
sort(families,families+10000,cmp);
printf("%d\n",count);
for(int i = 0 ; i < count ; i ++)
{
printf("%04d %d %.3f %.3f\n",families[i].root,families[i].num_member,(families[i].count) / (families[i].num_member*1.0),(families[i].s) / (families[i].num_member*1.0));
}
return 0;
}