优先队列(大根堆 小根堆)

priority_queue 容器适配器为了保证每次从队头移除的都是当前优先级最高的元素,每当有新元素进入,它都会根据既定的排序规则找到优先级最高的元素,并将其移动到队列的队头;同样,当 priority_queue 从队头移除出一个元素之后,它也会再找到当前优先级最高的元素,并将其移动到队头。基于 priority_queue 的这种特性,因此该容器适配器有被称为优先级队列。
             

1.语法

        priority_queue<  数据类型,vector<数据类型>,class Compare = less<typename Container::value_type> >  que;

        注意: < 参数1,vector<参数1> ,比较方式>

        参数1为数据类型   

        *****比较方式: 必须得是一个类或者结构体内的一个对象比较方式

例:

#include<iostream>
#include<queue>
using namespace std;


struct cmp       //必须是类或结构体的一个函数 而不能是一个普通的全局函数
{
    bool operator() (int a,int b)
    {
        return a<b;
    }
};

/* bool cmp(int a,int b)

       {      return a<b ; } */ 普通的成员函数是不允许的

int main()
{
    priority_queue<int,vector<int>,cmp> q;
    q.push(1);
    q.push(2);
    q.push(3);
    cout<<q.top();

 

2.分类

·1.大根堆 

        特点 : 堆顶为该优先队列中值最大的 整个队列按照降序排序 (该方式也是优先队列的默认方式)

        表示形式:priority_queue<int,vector<int>,less<int>> 或priority_queue<int>(默认形式)

        自定义排序方式

        struct cmp       
 {
    bool operator() (int a,int b)
    {
        return a<b;  //这里的大于号或小于号为数据结构的定义 无需理解 特殊记忆

                            //小于号为大根堆 大于号为小根堆
    }
};

·2.小根堆

特点 : 堆顶为该优先队列中值最小的 整个队列按照升序排序 

        表示形式:priority_queue<int,vector<int>,greater<int>>

        自定义排序方式

        struct cmp       
 {
    bool operator() (int a,int b)
    {
        return a>b;  //这里的大于号或小于号为数据结构的定义 无需理解 特殊记忆

                            //小于号为大根堆 大于号为小根堆
    }
};

3.优先队列的数据处理

.size() 队列大小

.push() 插入数据

.pop() 弹出(堆顶)数据

.top() 堆顶数据

.empty() 队列是否为空 

4.结合结构体使用

#include<iostream>
#include<queue>
using namespace std;

struct person
{
    int id,money;
}

struct cmp
{
    bool operator() (person a,person b)
    {
        return a.money<b.money ||(a.money==b.money&&a.id>b.id);

        //按照先钱多排 钱一样的按序号小的排
    }
};

int main()
{
    priority_queue<int,vector<int>,cmp> q;
    q.push({1,1});
    q.push({2,3});
    q.push({3,0});
    cout<<q.top();

 

// 定义一个大根堆类 class MaxHeap { private: vector<int> heap; // 使用 vector 存储堆 int size; // 堆的大小 // 工具函数 —— 交换堆中的两个元素 void swap(int& a, int& b) { int temp = a; a = b; b = temp; } // 工具函数 —— 堆化某一个节点 void heapify(int index) { int largest = index; // 先将当前节点标记为最大值 int left = index * 2 + 1; // 左孩子节点的索引 int right = index * 2 + 2; // 右孩子节点的索引 // 比较当前节点、左孩子节点和右孩子节点中的最大值 if (left < size && heap[left] > heap[largest]) { largest = left; } if (right < size && heap[right] > heap[largest]) { largest = right; } // 如果当前节点的值不是最大值,则将当前节点和最大值节点交换,并递归地对最大值节点进行堆化 if (largest != index) { swap(heap[index], heap[largest]); heapify(largest); } } public: // 构造函数 —— 建立一个空堆 MaxHeap() { size = 0; } // 获取堆中元素的数量 int getSize() { return size; } // 判断堆是否为空 bool isEmpty() { return size == 0; } // 在堆末尾添加一个元素,并将其上移对其进行调整 void add(int element) { heap.push_back(element); size++; int index = size - 1; int parent = (index - 1) / 2; while (index > 0 && heap[index] > heap[parent]) { swap(heap[index], heap[parent]); index = parent; parent = (index - 1) / 2; } } // 获取堆顶元素 int peek() { if (size == 0) { throw "Heap is empty."; } return heap[0]; } // 删除堆顶元素,并将堆末尾的元素放到堆顶,然后将其下沉进行调整 int remove() { if (size == 0) { throw "Heap is empty."; } int root = heap[0]; heap[0] = heap[size - 1]; size--; heap.pop_back(); heapify(0); return root; } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值