- 博客(5)
- 收藏
- 关注
原创 实验四 手写数字识别的神经网络算法设计与实现
实验四 手写数字识别的神经网络算法设计与实现一、实验目的通过学习BP神经网络技术,对手写数字进行识别,基于结构的识别法及模板匹配法来提高识别率。二、实验器材PC机 matlab软件三、实验内容 按照BP神经网络设计方法选用两层BP网络,构造训练样本集,并构成训练所需的输入矢量和目标向量,通过画图工具,获得数字原始图像,截取图像像素为0的最大矩形区域,经过集合变换,变成1616的二值图像,再进行反色处理,其图像数据特征提取为神经网络的输入向量。通过实验证实,BP神经网络应用于手写数字识别
2021-11-23 08:14:44 2131
原创 最小错误率贝叶斯分类
实验三 最小错误率的贝叶斯分类利用贝叶斯后验概率确定分类:设有19人进行体检,结果如下表。但事后发现4人忘了写性别,试问,这4人是男是女?代码function self_mvnrnd1(varargin)%可自定义参数的函数if(nargin==12)%判定输入参数是否为12w1=mvnrnd(varargin{1},varargin{2},varargin{3});%第一类高斯函数密度值w2=mvnrnd(varargin{5},varargin{6},varargin{7});%第二类
2021-11-21 21:57:06 1716
原创 2021-10-27
实验三 势函数算法的迭代训练一.实验目的通过本实验的学习,使学生了解或掌握模式识别中利用势函数思想设计非线性判别函数的方法,能够实现模式的分类。学会运用已学习的先导课程如数据结构和算法设计知识,选用合适的数据结构完成算法的设计和程序的实现。并通过训练数据来建立非线性判别函数,通过代待分类样本进行分类预测,通过检查预测结果和数据的几何分布特性检验分类器的正确性。通过选用此种分类方法进行分类器设计实验,强化学生对非线性分类器的了解和应用,从而牢固掌握模式识别课程内容知识。二.实验内容假定对病人3项主要指标
2021-10-27 22:55:11 135
原创 最大最小距离法
实验一实验目的本实验的目的是使学生了解最大最小距离法聚类方法,掌握最大最小距离聚类分析法的基本原理,培养学生实际动手和思考能力,为数据分析和处理打下牢固基础。最大最小距离聚类算法该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。实验结果实验代码close allclc%坐标点,初始化选定比例系数num = 10;eta = 0.5;axis([0 10 0 10]..
2021-10-14 11:40:14 830
原创 最大最小距离法
实验一 最大最小距离法一.实验目的本实验的目的是使学生了解最大最小距离法聚类方法,掌握最大最小距离聚类分析法的基本原理,培养学生实际动手和思考能力,为数据分析和处理打下牢固基础。**二.**最大最小距离聚类算法该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。最大最小距离聚类算法步骤如下:① 给定,,并且任取一个样本作为第一个聚合中心,。② 寻找新的集合中心:计算其它所有样本到的距离:若,则取为第二个聚合中心,。
2021-10-13 22:16:33 863
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人