最小错误率贝叶斯分类

这篇博客通过实例展示了如何使用贝叶斯分类方法处理体检数据,特别是最小错误率的贝叶斯决策。首先,博主用Python绘制了男女身高频谱图,然后利用最大似然估计法和贝叶斯估计法求得了男女身高的分布参数。接着,博主构建了决策面,通过等高线图展示了类别判定,并分析了样本点(160,45)和(178,70)应归属的性别类别。" 104003464,9181833,C#/.NET 微服务跨域解决方案,"['.NET框架', 'CORS', 'API开发', '微服务架构', '核心3.1']
摘要由CSDN通过智能技术生成

实验三 最小错误率的贝叶斯分类

利用贝叶斯后验概率确定分类:设有19人进行体检,结果如下表。但事后发现4人忘了写性别,试问,这4人是男是女?
在这里插入图片描述
代码

import xlrd
import math
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
from scipy.stats import norm

‘’’
/task1/
Take the height as an example, draw a histogram of the
height of the boys and girls and compare
/task1/
‘’’
mydata = xlrd.open_workbook(‘D:/program/py_code/data_2018.xls’)
mysheet1 = mydata.sheet_by_name(“Sheet1”)

#获取行数、列数
nRows=mysheet1.nrows
nCols=mysheet1.ncols

#用于存取男生女生身高数据
man_height=[]
woman_height=[]

#获取第4列的内容:身高
for i in range(nRows):
if i+1<nRows:
if mysheet1.cell(i+1,1).value1:
man_height.append(mysheet1.cell(i+1,3).value)
elif mysheet1.cell(i+1,1).value
0:
woman_height.append(mysheet1.cell(i+1,3).value)

#获取男、女生的数量
manlen=len(man_height)
womanlen=len(woman_height)

#画男女生身高频谱图
plt.hist(man_height,manlen,align=‘left’,color=‘red’,label=‘boy’)
plt.hist(woman_height,womanlen,align=‘right’,label=‘girl’)
plt.legend(loc=0)
plt.xlabel(‘height’)
plt.xlim(min(man_height+woman_height)-1,max(man_height+woman_height)+1)
plt.ylabel(‘number’)
plt.title(‘Boy height spectrum’)
#xsticks与yticks:指定坐标轴的刻度

最小错误率贝叶斯分类器是一种基于贝叶斯决策理论的分类器,在matlab上实现非常方便。 首先,需要先收集和准备好带标签的训练样本数据。然后,使用matlab的统计工具箱中的贝叶斯分类器函数,如`fitcnb`来训练分类器模型。 在训练过程中,贝叶斯分类器会根据训练数据估计每个类别的概率密度函数,并计算出每个类别的先验概率。然后,根据贝叶斯定理计算后验概率,以确定给定输入样本属于各个类别的概率。 在模型训练完成后,可以使用`predict`函数对新样本进行分类预测。该函数将基于先前训练的模型和输入样本的特征,根据最小错误率准则来进行分类决策最小错误率分类器的目标是选择错误率最小决策边界,使得分类器在测试样本上的性能最佳。它通过选择边界上的样本点来实现。基于先验概率和代价函数,最小错误率分类器可以通过最小化平均错误率来求得最佳分类边界。 在实际应用中,对于样本的特征选择与预处理等步骤,都可以使用matlab提供的丰富工具函数和工具箱来完成。此外,还可以根据实际需求对贝叶斯分类器进行改进和优化,如使用核函数进行非线性分类,或者通 过特征选择和降维等方法提高分类性能。 总之,matlab提供了强大的工具和函数,可以实现最小错误率贝叶斯分类器,并借助其丰富的统计和机器学习功能,可以很好地应用于各种分类问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值