希尔排序基本思想:
希尔排序实质上是一种分组插入方法。它的基本思想是:对于n个待排序的数列,取一个小于n的整数gap(gap被称为步长)将待排序元素分成若干个组子序列,所有距离为gap的倍数的记录放在同一个组中;然后,对各组内的元素进行直接插入排序。 这一趟排序完成之后,每一个组的元素都是有序的。然后减小gap的值,并重复执行上述的分组和排序。重复这样的操作,当gap=1时,整个数列就是有序的。
希尔排序代码(一)
/* * 希尔排序 * * 参数说明: * a -- 待排序的数组 * n -- 数组的长度 */ void shell_sort1(int a[], int n) { int i,j,gap; // gap为步长,每次减为原来的一半。 for (gap = n / 2; gap > 0; gap /= 2) { // 共gap个组,对每一组都执行直接插入排序 for (i = 0 ;i < gap; i++) { for (j = i + gap; j < n; j += gap) { // 如果a[j] < a[j-gap],则寻找a[j]位置,并将后面数据的位置都后移。 if (a[j] < a[j - gap]) { int tmp = a[j]; int k = j - gap; while (k >= 0 && a[k] > tmp) { a[k + gap] = a[k]; k -= gap; } a[k + gap] = tmp; } } } } }
在上面的希尔排序中,首先要选取步长gap的值。选取了gap之后,就将数列分成了gap个组,对于每一个组都执行直接插入排序。在排序完所有的组之后,将gap的值减半;继续对数列进行分组,然后进行排序。重复这样的操作,直到gap<0为止。此时,数列也就是有序的了。
为了便于观察,我们将希尔排序中的直接插入排序独立出来,得到代码(二)。
希尔排序代码(二)
/* * 对希尔排序中的单个组进行排序 * * 参数说明: * a -- 待排序的数组 * n -- 数组总的长度 * i -- 组的起始位置 * gap -- 组的步长 * * 组是"从i开始,将相隔gap长度的数都取出"所组成的! */ void group_sort(int a[], int n, int i,int gap) { int j; for (j = i + gap; j < n; j += gap) { // 如果a[j] < a[j-gap],则寻找a[j]位置,并将后面数据的位置都后移。 if (a[j] < a[j - gap]) { int tmp = a[j]; int k = j - gap; while (k >= 0 && a[k] > tmp) { a[k + gap] = a[k]; k -= gap; } a[k + gap] = tmp; } } } /* * 希尔排序 * * 参数说明: * a -- 待排序的数组 * n -- 数组的长度 */ void shell_sort2(int a[], int n) { int i,gap; // gap为步长,每次减为原来的一半。 for (gap = n / 2; gap > 0; gap /= 2) { // 共gap个组,对每一组都执行直接插入排序 for (i = 0 ;i < gap; i++) group_sort(a, n, i, gap); } }
下面以数列{80,30,60,40,20,10,50,70}为例,演示它的希尔排序过程。
第1趟:(gap=4)
当gap=4时,意味着将数列分为4个组: {80,20},{30,10},{60,50},{40,70}。 对应数列: {80,30,60,40,20,10,50,70}
对这4个组分别进行排序,排序结果: {20,80},{10,30},{50,60},{40,70}。 对应数列: {20,10,50,40,80,30,60,70}
第2趟:(gap=2)
当gap=2时,意味着将数列分为2个组:{20,50,80,60}, {10,40,30,70}。 对应数列: {20,10,50,40,80,30,60,70}
注意:{20,50,80,60}实际上有两个有序的数列{20,80}和{50,60}组成。
{10,40,30,70}实际上有两个有序的数列{10,30}和{40,70}组成。
对这2个组分别进行排序,排序结果:{20,50,60,80}, {10,30,40,70}。 对应数列: {20,10,50,30,60,40,80,70}
第3趟:(gap=1)
当gap=1时,意味着将数列分为1个组:{20,10,50,30,60,40,80,70}
注意:{20,10,50,30,60,40,80,70}实际上有两个有序的数列{20,50,60,80}和{10,30,40,70}组成。
对这1个组分别进行排序,排序结果:{10,20,30,40,50,60,70,80}
希尔排序时间复杂度
希尔排序的时间复杂度与增量(即,步长gap)的选取有关。例如,当增量为1时,希尔排序退化成了直接插入排序,此时的时间复杂度为O(N²),而Hibbard增量的希尔排序的时间复杂度为O(N3/2)。
希尔排序稳定性
希尔排序是不稳定的算法,它满足稳定算法的定义。对于相同的两个数,可能由于分在不同的组中而导致它们的顺序发生变化。
算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!
希尔排序C实现
7 8 #include <stdio.h> 9 10 // 数组长度 11 #define LENGTH(array) ( (sizeof(array)) / (sizeof(array[0])) ) 12 13 /* 14 * 希尔排序 15 * 16 * 参数说明: 17 * a -- 待排序的数组 18 * n -- 数组的长度 19 */ 20 void shell_sort1(int a[], int n) 21 { 22 int i,j,gap; 23 24 // gap为步长,每次减为原来的一半。 25 for (gap = n / 2; gap > 0; gap /= 2) 26 { 27 // 共gap个组,对每一组都执行直接插入排序 28 for (i = 0 ;i < gap; i++) 29 { 30 for (j = i + gap; j < n; j += gap) 31 { 32 // 如果a[j] < a[j-gap],则寻找a[j]位置,并将后面数据的位置都后移。 33 if (a[j] < a[j - gap]) 34 { 35 int tmp = a[j]; 36 int k = j - gap; 37 while (k >= 0 && a[k] > tmp) 38 { 39 a[k + gap] = a[k]; 40 k -= gap; 41 } 42 a[k + gap] = tmp; 43 } 44 } 45 } 46 47 } 48 } 49 50 /* 51 * 对希尔排序中的单个组进行排序 52 * 53 * 参数说明: 54 * a -- 待排序的数组 55 * n -- 数组总的长度 56 * i -- 组的起始位置 57 * gap -- 组的步长 58 * 59 * 组是"从i开始,将相隔gap长度的数都取出"所组成的! 60 */ 61 void group_sort(int a[], int n, int i,int gap) 62 { 63 int j; 64 65 for (j = i + gap; j < n; j += gap) 66 { 67 // 如果a[j] < a[j-gap],则寻找a[j]位置,并将后面数据的位置都后移。 68 if (a[j] < a[j - gap]) 69 { 70 int tmp = a[j]; 71 int k = j - gap; 72 while (k >= 0 && a[k] > tmp) 73 { 74 a[k + gap] = a[k]; 75 k -= gap; 76 } 77 a[k + gap] = tmp; 78 } 79 } 80 } 81 82 /* 83 * 希尔排序 84 * 85 * 参数说明: 86 * a -- 待排序的数组 87 * n -- 数组的长度 88 */ 89 void shell_sort2(int a[], int n) 90 { 91 int i,gap; 92 93 // gap为步长,每次减为原来的一半。 94 for (gap = n / 2; gap > 0; gap /= 2) 95 { 96 // 共gap个组,对每一组都执行直接插入排序 97 for (i = 0 ;i < gap; i++) 98 group_sort(a, n, i, gap); 99 } 100 } 101 102 void main() 103 { 104 int i; 105 int a[] = {80,30,60,40,20,10,50,70}; 106 int ilen = LENGTH(a); 107 108 printf("before sort:"); 109 for (i=0; i<ilen; i++) 110 printf("%d ", a[i]); 111 printf("\n"); 112 113 shell_sort1(a, ilen); 114 //shell_sort2(a, ilen); 115 116 printf("after sort:"); 117 for (i=0; i<ilen; i++) 118 printf("%d ", a[i]); 119 printf("\n"); 120 }
以上结果:
before sort:80 30 60 40 20 10 50 70
after sort:10 20 30 40 50 60 70 80