数字信号处理知识梳理与例题2——时域离散信号的傅立叶变换

提示:本节只需掌握基本定义与性质,后期进行信号的频域转换的时候多采用Z变换


学习要点

1.傅立叶变换的正变换和逆变换的定义,以及存在条件。
2.傅立叶变换的性质和定理

一、傅立叶变换及反变换定义

序列 x ( n ) x(n) x(n)的傅立叶变换定义为:
X ( e j ω ) = F T [ x ( n ) ] = ∑ n = − ∞ ∞ x ( n ) e − j ω n X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{FT}[x(n)]=\sum_{n=-\infty}^{\infty} x(n) \mathrm{e}^{-\mathrm{j} \omega n} X(ejω)=FT[x(n)]=n=x(n)ejωn
傅立叶正变换存在的充分条件是序列绝对可和:
∑ n = − ∞ ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{\infty}|x(n)|<\infty n=x(n)<
傅立叶反变换公式为:
x ( n ) = IFT ⁡ [ X ( e j ω ) ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n   d ω x(n)=\operatorname{IFT}\left[X\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{e}^{\mathrm{j} \omega n} \mathrm{~d} \omega x(n)=IFT[X(ejω)]=2π1ππX(ejω)ejωn dω

例题

1.设 X ( e j ω ) X(e^{j\omega}) X(ejω) x ( n ) x(n) x(n)的傅立叶变换,求 x ( − n ) x(-n) x(n)的傅立叶变换
解:
F T [ x ( − n ) ] = ∑ n = − ∞ ∞ x ( − n ) e − j ω n FT[x(-n)] = \sum\limits_{n=-\infty}^{\infty} x(-n)e^{-j\omega n} FT[x(n)]=n=x(n)ejωn
n ′ = − n n^{\prime}=-n n=n,则
F T [ x ( − n ) ] = ∑ n ′ = − ∞ ∞ x ( n ′ ) e j ω n ′ = X ( e − j ω ) FT[x(-n)] = \sum\limits_{n^{\prime}=-\infty}^{\infty} x(n^{\prime})e^{j\omega n^{\prime}}=X(e^{-j\omega}) FT[x(n)]=n=x(n)ejωn=X(ejω)

2.已知 X ( e j ω ) = { 1 ∣ ω ∣ < ω 0 0 ω 0 < ∣ ω ∣ ⩽ π X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\left\{\begin{array}{ll} 1 & |\omega|<\omega_{0} \\ 0 & \omega_{0}<|\omega| \leqslant \pi \end{array}\right. X(ejω)={10ω<ω0ω0<ωπ
X ( e j ω ) X(e^{j\omega}) X(ejω)的傅立叶反变换 x ( n ) x(n) x(n)

解:
x ( n ) = 1 2 π ∫ − ω 0 ω 0 e j ω n d ω = 1 2 π e j ω 0 n − e − j ω 0 n j n = sin ⁡ ( ω 0 n ) π n x(n) = \frac{1}{2\pi}\int_{-\omega_0}^{\omega_0}e^{j\omega n}d\omega=\dfrac{1}{2\pi} \dfrac{e^{j\omega_0 n} - e^{-j\omega _0n}}{jn}=\dfrac{\sin(\omega_0 n)}{\pi n} x(n)=2π1ω0ω0ejωndω=2π1jnejω0nejω0n=πnsin(ω0n)

二、时域离散信号傅立叶变换的性质

1.周期性

X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ω n = ∑ n = − ∞ ∞ x ( n ) e − j ( ω + 2 π M ) n = X ( e j ( ω + 2 π M ) ) \begin{aligned} \boldsymbol{X}\left(\boldsymbol{e}^{j \omega}\right) &=\sum_{\boldsymbol{n}=-\infty}^{\infty} \boldsymbol{x}(\boldsymbol{n}) e^{-j \omega n} \\ &=\sum_{\boldsymbol{n}=-\infty}^{\infty} \boldsymbol{x}(\boldsymbol{n}) e^{-j(\omega+2 \pi M) n} \\ &=\boldsymbol{X}\left(\boldsymbol{e}^{j(\boldsymbol{\omega}+\mathbf{2} \pi \boldsymbol{M})}\right) \end{aligned} X(ejω)=n=x(n)ejωn=n=x(n)ej(ω+2πM)n=X(ej(ω+2πM))
推导来源:欧拉公式

2.线性

X 1 ( e j ω ) = F T [ x 1 ( n ) ] , X 2 ( e j ω ) = F T [ x 2 ( n ) ] X_{1}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{FT}\left[x_{1}(n)\right], X_{2}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{FT}\left[x_{2}(n)\right] X1(ejω)=FT[x1(n)],X2(ejω)=FT[x2(n)],那么
F T [ a x 1 ( n ) + b x 2 ( n ) ] = a X 1 ( e j ω ) + b X 2 ( e j ω ) \mathrm{FT}\left[a x_{1}(n)+b x_{2}(n)\right]=a \mathrm{X}_{1}\left(\mathrm{e}^{\mathrm{j} \omega}\right)+b X_{2}\left(\mathrm{e}^{\mathrm{j} \omega}\right) FT[ax1(n)+bx2(n)]=aX1(ejω)+bX2(ejω)

3.时移与频移性质

X ( e j ω ) = F T [ x ( n ) ] X(e^{j \omega}) = FT[x(n)] X(ejω)=FT[x(n)],那么 F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) F T [ e j ω 0 n x ( n ) ] = X ( e j ( ω − ω 0 ) ) \begin{aligned} \mathrm{FT}\left[x\left(n-n_{0}\right)\right] &=\mathrm{e}^{-\mathrm{j} \omega n_{0}} X\left(\mathrm{e}^{\mathrm{j} \omega}\right) \\ \mathrm{FT}\left[\mathrm{e}^{\mathrm{j} \omega_{0} n} x(n)\right] &=X\left(\mathrm{e}^{\mathrm{j}\left(\omega-\omega_{0}\right)}\right) \end{aligned} FT[x(nn0)]FT[ejω0nx(n)]=ejωn0X(ejω)=X(ej(ωω0))

例题

x ( n ) = δ ( n − 3 ) x(n)=\delta(n-3) x(n)=δ(n3)的傅立叶变换。
解:
∵ F T [ δ ( n ) ] = 1 \because \boldsymbol{F T}[\boldsymbol{\delta}(\boldsymbol{n})]=1 FT[δ(n)]=1
∴ F T [ δ ( n − 3 ) ] = e − j ω 3 ⋅ 1 = e − j ω 3 \therefore \boldsymbol{F T}[\boldsymbol{\delta}(\boldsymbol{n}-\mathbf{3})]=e^{-j \omega 3} \cdot 1 = e^{-j \omega 3} FT[δ(n3)]=ejω31=ejω3

例题

x ( n ) = 5 ( 1 2 ) n u ( n − 1 ) x(n)=5\left(\frac{1}{2}\right)^{n} u(n-1) x(n)=5(21)nu(n1)的傅立叶变换。
解:
∵ FT ⁡ [ a n u ( n ) ] = 1 1 − a e − j ω \because \operatorname{FT}\left[\boldsymbol{a}^{n} \boldsymbol{u}(\boldsymbol{n})\right]=\frac{\mathbf{1}}{\mathbf{1}-a e^{-j \omega}} FT[anu(n)]=1aejω1
∴ FT ⁡ [ ( 1 2 ) n u ( n ) ] = 1 1 − 0.5 e − j ω \therefore \operatorname{FT}\left[\left(\frac{1}{2}\right)^{n} u(n)\right]=\frac{1}{1-0.5 e^{-j \omega}} FT[(21)nu(n)]=10.5ejω1
根据时移性质有 FT ⁡ [ a n − 1 u ( n − 1 ) ] = e − j ω 1 − a e − j ω \operatorname{FT}\left[\boldsymbol{a}^{n-\mathbf{1}} \boldsymbol{u}(\boldsymbol{n}-1)\right]=\frac{e^{-j \omega}}{\mathbf{1}-a e^{-j \omega}} FT[an1u(n1)]=1aejωejω
∴ F T [ ( 1 2 ) n − 1 u ( n − 1 ) ] = e − j ω 1 − a e − j ω \therefore \boldsymbol{F T}\left[\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{n-\mathbf{1}} \boldsymbol{u}(\boldsymbol{n}-\mathbf{1})\right]=\frac{e^{-j \omega}}{1-a e^{-j \omega}} FT[(21)n1u(n1)]=1aejωejω
∵ 5 ( 1 2 ) n u ( n − 1 ) = 5 2 ( 1 2 ) n − 1 u ( n − 1 ) \because 5\left(\frac{1}{2}\right)^{n} u(n-1)=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1} u(n-1) 5(21)nu(n1)=25(21)n1u(n1)
∴ F T [ 5 ( 1 2 ) n u ( n − 1 ) ] = 5 e − j ω 2 ( 1 − a e − j ω ) \therefore \boldsymbol{F T}\left[\mathbf{5}\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{\boldsymbol{n}} \boldsymbol{u}(\boldsymbol{n}-1)\right]=\frac{5 e^{-j \omega}}{2\left(1-a e^{-j \omega}\right)} FT[5(21)nu(n1)]=2(1aejω)5ejω(根据线性性质)

4.时域卷积性质

y ( n ) = x ( n ) ∗ h ( n ) y(n)=x(n)*h(n) y(n)=x(n)h(n),则有
Y ( e j ω ) = X ( e j ω ) H ( e j ω ) Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) Y(ejω)=X(ejω)H(ejω)

5.频域卷积性质

y ( n ) = x ( n ) h ( n ) y(n)=x(n)h(n) y(n)=x(n)h(n),则有
Y ( e j ω ) = 1 2 π X ( e j ω ) ∗ H ( e j ω ) Y(e^{j\omega}) = \frac{1}{2\pi} X(e^{j\omega})*H(e^{j\omega}) Y(ejω)=2π1X(ejω)H(ejω)

6.帕斯维尔定理(能量定理)

时域总能量=频域总能量
∑ n = − ∞ + ∞ ∣ x ( n ) ∣ 2 = 1 2 π ∫ − π π ∣ X ( e j ω ) ∣ 2 d ω \sum_{n=-\infty}^{+\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2}d\omega n=+x(n)2=2π1ππX(ejω)2dω

例题

设序列 x ( n ) x(n) x(n)的傅立叶变换为 X ( e j ω ) X(e^{j\omega}) X(ejω),序列见下图,完成以下运算。
序列x(n)

解:
由帕斯维尔定理: 1 2 π ∫ − π π ∣ X ( e j ω ) ∣ 2 = ∑ n = − ∞ + ∞ ∣ x ( n ) ∣ 2 \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2}=\sum_{n=-\infty}^{+\infty}|x(n)|^{2} 2π1ππX(ejω)2=n=+x(n)2得:
∫ − π π ∣ X ( e j ω ) ∣ 2 = 2 π ∑ n = − ∞ + ∞ ∣ x ( n ) ∣ 2 = 2 π ( 1 + 1 + 4 + + 1 + 1 + 4 + 1 + 1 ) = 28 π \begin{aligned} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} &=2 \pi \sum_{n=-\infty}^{+\infty}|x(n)|^{2} \\ &=2 \pi(1+1+4++1+1+4+1+1) = 28\pi \end{aligned} ππX(ejω)2=2πn=+x(n)2=2π(1+1+4++1+1+4+1+1)=28π

7.FT的对称性(重点)

预备知识:
(1)共轭对称和共轭反对称的概念:
x e ( n ) x_e(n) xe(n)为共轭对称序列:满足 x e ( n ) = x e ∗ ( − n ) x_e(n) = x_e^*(-n) xe(n)=xe(n)
x 0 ( n ) x_0(n) x0(n)为共轭反对称序列:满足 x o ( n ) = − x o ∗ ( − n ) x_o(n) = -x_o^*(-n) xo(n)=xo(n)

(2)共轭对称和共轭反对称的性质:
共轭对称序列实部是偶函数,虚部是奇函数
共轭反对称序列实部是奇函数,虚部是偶函数

(3)一般序列用共轭对称和共轭反对称序列之和表示: x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n)

(4)通过 x ( n ) x_(n) x(n)求解共轭对称分量 x e ( n ) x_e(n) xe(n)和共轭反对称分量 x o ( n ) x_o(n) xo(n)
x e ( n ) = 1 2 [ x ( n ) + x ∗ ( − n ) ] x_e(n) = \frac{1}{2}\left[ x(n) + x^*(-n)\right] xe(n)=21[x(n)+x(n)]
x o ( n ) = 1 2 [ x ( n ) − x ∗ ( − n ) ] x_o(n) = \frac{1}{2}\left[ x(n) - x^*(-n)\right] xo(n)=21[x(n)x(n)]

接下来讨论FT的对称性:
(1)将序列 x ( n ) x(n) x(n)分成实部和虚部,即
x ( n ) = x r ( n ) + j x i ( n ) x(n)=x_{\mathrm{r}}(n)+\mathrm{j} x_{\mathrm{i}}(n) x(n)=xr(n)+jxi(n)
结论:实部对应的傅立叶变换具有共轭对称性,虚部和 j j j一起对应的傅立叶变换具有共轭反对称性。

(2)将序列 x ( n ) x(n) x(n)分成共轭对称部分和反共轭对称部分,即
x ( n ) = x e ( n ) + x o ( n ) x(n)=x_{\mathrm{e}}(n)+x_{\mathrm{o}}(n) x(n)=xe(n)+xo(n)
结论:序列x(n)的共轭对称部分对应 X ( e j ω ) X(e^{j\omega}) X(ejω)的实部 X R ( e j ω ) X_R(e^{j\omega}) XR(ejω),而序列(n)的共轭反对称部分对应 X ( e j ω ) X(e^{j\omega}) X(ejω)的虚部。

例题

x ( n ) = R 4 ( n ) x(n)=R_4(n) x(n)=R4(n),求 x e ( n ) x_e(n) xe(n) x o ( n ) x_o(n) xo(n)
解:
单位矩形序列是实序列,有 x ∗ ( − n ) = x ( − n ) x^*(-n)=x(-n) x(n)=x(n)
x e ( n ) = 1 2 [ R 4 ( n ) + R 4 ( − n ) ] = { 0.5 , 0.5 , 0.5 , 1 , 0.5 , 0.5 , 0.5 } x_{e}(n)=\frac{1}{2}\left[R_{4}(n)+R_{4}(-n)\right]=\{0.5,0.5,0.5,1,0.5,0.5,0.5\} xe(n)=21[R4(n)+R4(n)]={0.5,0.5,0.5,1,0.5,0.5,0.5}
x o ( n ) = 1 2 [ R 4 ( n ) − R 4 ( − n ) ] = { − 0.5 , − 0.5 , − 0.5 , 0 ‾ , 0.5 , 0.5 , 0.5 } x_{o}(n)=\frac{1}{2}\left[R_{4}(n)-R_{4}(-n)\right] = \{-0.5,-0.5,-0.5, \underline{0}, 0.5,0.5,0.5\} xo(n)=21[R4(n)R4(n)]={0.5,0.5,0.5,0,0.5,0.5,0.5}

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值